Quasi-periodic solutions of nonlinear Schrodinger equations on Td

被引:5
|
作者
Berti, Massimiliano [1 ]
Bolle, Philippe [2 ]
机构
[1] Univ Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[2] Univ Avignon & Pays Vaucluse, Lab Anal Non Lineaire & Geometrie EA 2151, F-84018 Avignon, France
基金
欧洲研究理事会;
关键词
Nonlinear Schrodinger equation; Nash-Moser Theory; KAM for PDE; quasi-periodic solutions; small divisors; infinite dimensional Hamiltonian systems; WAVE EQUATIONS;
D O I
10.4171/RLM/597
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present recent existence results of quasi-periodic solutions for Schrodinger equations with a multiplicative potential on T-d, d >= 1, finitely differentiable nonlinearities, and tangential frequencies constrained along a pre-assigned direction. The solutions have only Sobolev regularity both in time and space. If the nonlinearity and the potential are in C-infinity then the solutions are in C-infinity. The proofs are based on an improved Nash-Moser iterative scheme and a new multiscale inductive analysis for the inverse linearized operators.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 50 条
  • [31] Quasi-periodic solutions for 1D Schrodinger equations with higher order nonlinearity
    Liang, ZG
    You, JG
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (06) : 1965 - 1990
  • [32] Quasi-periodic solutions of mixed AKNS equations
    Geng, Xianguo
    Xue, Bo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (11) : 3662 - 3674
  • [33] Quasi-periodic solutions and stability for a weakly damped nonlinear quasi-periodic Mathieu equation
    Guennoun, K
    Houssni, M
    Belhaq, M
    NONLINEAR DYNAMICS, 2002, 27 (03) : 211 - 236
  • [34] A result on quasi-periodic solutions of a nonlinear beam equation with a quasi-periodic forcing term
    Wang, Yi
    Si, Jianguo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (01): : 189 - 190
  • [35] A result on quasi-periodic solutions of a nonlinear beam equation with a quasi-periodic forcing term
    Yi Wang
    Jianguo Si
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 189 - 190
  • [36] Quasi-Periodic Solutions and Stability for a Weakly Damped Nonlinear Quasi-Periodic Mathieu Equation
    K. Guennoun
    M. Houssni
    M. Belhaq
    Nonlinear Dynamics, 2002, 27 : 211 - 236
  • [37] PERIODIC SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS: A PARADIFFERENTIAL APPROACH
    Delort, Jean-Marc
    ANALYSIS & PDE, 2011, 4 (05): : 639 - 676
  • [38] Quasi-periodic solutions to a hierarchy of integrable nonlinear differential-difference equations
    Liu, Wei
    Geng, Xianguo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) : 8728 - 8745
  • [39] Quasi-periodic solutions in nonlinear asymmetric oscillations
    Yang, Xiaojing
    Lo, Kueiming
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2007, 26 (02): : 207 - 220
  • [40] Existence and stability of quasi-periodic solutions for derivative wave equations
    Berti, Massimiliano
    Biasco, Luca
    Procesi, Michela
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2013, 24 (02) : 199 - 214