Quasi-periodic solutions of nonlinear Schrodinger equations on Td

被引:5
作者
Berti, Massimiliano [1 ]
Bolle, Philippe [2 ]
机构
[1] Univ Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[2] Univ Avignon & Pays Vaucluse, Lab Anal Non Lineaire & Geometrie EA 2151, F-84018 Avignon, France
基金
欧洲研究理事会;
关键词
Nonlinear Schrodinger equation; Nash-Moser Theory; KAM for PDE; quasi-periodic solutions; small divisors; infinite dimensional Hamiltonian systems; WAVE EQUATIONS;
D O I
10.4171/RLM/597
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present recent existence results of quasi-periodic solutions for Schrodinger equations with a multiplicative potential on T-d, d >= 1, finitely differentiable nonlinearities, and tangential frequencies constrained along a pre-assigned direction. The solutions have only Sobolev regularity both in time and space. If the nonlinearity and the potential are in C-infinity then the solutions are in C-infinity. The proofs are based on an improved Nash-Moser iterative scheme and a new multiscale inductive analysis for the inverse linearized operators.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 20 条
[11]  
Bourgain J, 2005, Annals of Mathematics Studies, V158
[12]   NEWTONS METHOD AND PERIODIC-SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
CRAIG, W ;
WAYNE, CE .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (11) :1409-1498
[13]  
Eliasson L. H., 1988, Ann. Sc. Norm. Super. Pisa Cl. Sci, V15, P115
[14]   KAM for the nonlinear Schrodinger equation [J].
Eliasson, L. Hakan ;
Kuksin, Sergei B. .
ANNALS OF MATHEMATICS, 2010, 172 (01) :371-435
[15]   Discrete one-dimensional quasi-periodic Schrodinger operators with pure point spectrum [J].
Eliasson, LH .
ACTA MATHEMATICA, 1997, 179 (02) :153-196
[16]   PERTURBATIVELY UNSTABLE EIGENVALUES OF A PERIODIC SCHRODINGER OPERATOR [J].
FELDMAN, J ;
KNORRER, H ;
TRUBOWITZ, E .
COMMENTARII MATHEMATICI HELVETICI, 1991, 66 (04) :557-579
[17]  
FELDMAN J, 1987, FUNKTSIONAL ANAL PRI, V2, P22
[18]  
KUKSIN S, 1987, FUNKTSIONAL ANAL PRI, V2, P95
[19]   INVERSE FUNCTION THEOREM IN FRECHET-SPACES [J].
LOJASIEWICZ, S ;
ZEHNDER, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 33 (02) :165-174
[20]  
[No title captured]