Quasi-periodic solutions of nonlinear Schrodinger equations on Td

被引:5
作者
Berti, Massimiliano [1 ]
Bolle, Philippe [2 ]
机构
[1] Univ Naples Federico 2, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[2] Univ Avignon & Pays Vaucluse, Lab Anal Non Lineaire & Geometrie EA 2151, F-84018 Avignon, France
基金
欧洲研究理事会;
关键词
Nonlinear Schrodinger equation; Nash-Moser Theory; KAM for PDE; quasi-periodic solutions; small divisors; infinite dimensional Hamiltonian systems; WAVE EQUATIONS;
D O I
10.4171/RLM/597
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present recent existence results of quasi-periodic solutions for Schrodinger equations with a multiplicative potential on T-d, d >= 1, finitely differentiable nonlinearities, and tangential frequencies constrained along a pre-assigned direction. The solutions have only Sobolev regularity both in time and space. If the nonlinearity and the potential are in C-infinity then the solutions are in C-infinity. The proofs are based on an improved Nash-Moser iterative scheme and a new multiscale inductive analysis for the inverse linearized operators.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 20 条
[1]   An abstract Nash-Moser theorem with parameters and applications to PDEs [J].
Berti, M. ;
Bolle, P. ;
Procesi, M. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :377-399
[2]  
BERTI M., DUKE MATH J IN PRESS
[3]  
BERTI M, COMM MATH P IN PRESS
[4]  
BERTI M, 2010, QUASIPERIODIC SOLUTI
[5]   Sobolev Periodic Solutions of Nonlinear Wave Equations in Higher Spatial Dimensions [J].
Berti, Massimiliano ;
Bolle, Philippe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (02) :609-642
[6]   CONSTRUCTION OF PERIODIC-SOLUTIONS OF NONLINEAR-WAVE EQUATIONS IN HIGHER DIMENSION [J].
BOURGAIN, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (04) :629-639
[7]  
Bourgain J, 1997, MATH RES LETT, V4, P445
[8]   Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrodinger equations [J].
Bourgain, J .
ANNALS OF MATHEMATICS, 1998, 148 (02) :363-439
[9]  
Bourgain J., 1997, CONT MATH, VVolume 208, P85
[10]  
BOURGAIN J, 1994, INTERNAT MATH RES NO