Local stabilization of a class of nonlinear systems by dynamic output feedback

被引:12
作者
Chen, PN
Qin, HS
Huang, J [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Automat & Comp Aided Engn, Hong Kong, Hong Kong, Peoples R China
[2] Chinese Acad Sci, Inst Syst Sci, Beijing 100080, Peoples R China
[3] China Inst Metrol, Div Math, Hangzhou 310034, Peoples R China
基金
中国国家自然科学基金;
关键词
Malkin's theorem; stabilization; nonlinear systems; dynamic output feedback; dynamic extension;
D O I
10.1016/S0005-1098(01)00047-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a constructive way to design dynamic output feedback control law to locally stabilize a class of nonlinear systems based on Malkin's Theorem, This class of nonlinear systems is general enough to include systems which are neither minimum phase nor locally uniformly completely observable, and whose linearization can contain unstabilizable and undetectable critical modes. Thus our result can handle some systems that cannot be stabilized by existing methods. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:969 / 981
页数:13
相关论文
共 22 条
[1]  
[Anonymous], 2013, Nonlinear control systems
[2]   STABILIZATION VIA DYNAMIC OUTPUT-FEEDBACK FOR SYSTEMS WITH OUTPUT NONLINEARITIES [J].
BATTILOTTI, S .
SYSTEMS & CONTROL LETTERS, 1994, 23 (06) :411-419
[3]   ASYMPTOTIC STABILIZATION OF MINIMUM PHASE NONLINEAR-SYSTEMS [J].
BYRNES, CI ;
ISIDORI, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (10) :1122-1137
[4]   LOCAL STABILIZATION OF MINIMUM-PHASE NONLINEAR-SYSTEMS [J].
BYRNES, CI ;
ISIDORI, A .
SYSTEMS & CONTROL LETTERS, 1988, 11 (01) :9-17
[5]   NEW RESULTS AND EXAMPLES IN NONLINEAR FEEDBACK STABILIZATION [J].
BYRNES, CI ;
ISIDORI, A .
SYSTEMS & CONTROL LETTERS, 1989, 12 (05) :437-442
[6]   PASSIVITY, FEEDBACK EQUIVALENCE, AND THE GLOBAL STABILIZATION OF MINIMUM PHASE NONLINEAR-SYSTEMS [J].
BYRNES, CI ;
ISIDORI, A ;
WILLEMS, JC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (11) :1228-1240
[7]  
Carr J, 1982, Applications of centre manifold theory
[8]  
CHEN P, 1997, ACTA AUTOMATICA SINI, V23, P338
[9]   OUTPUT-FEEDBACK STABILIZATION OF FULLY LINEARIZABLE SYSTEMS [J].
ESFANDIARI, F ;
KHALIL, HK .
INTERNATIONAL JOURNAL OF CONTROL, 1992, 56 (05) :1007-1037
[10]  
Hahn W., 2019, Theory and Application of Liapunov's Direct Method