PARTIAL REGULARITY FOR WEAK SOLUTIONS OF ANISOTROPIC LANE-EMDEN EQUATION

被引:2
|
作者
Fazly, Mostafa [1 ]
Li, Yuan [1 ,2 ]
机构
[1] Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USA
[2] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
关键词
Finsler or anisotropic Laplacian; Lane-Emden equation; Hausdorff dimension; singular set; monotonicity formula; GRADIENT BOUNDS; DEGENERATE; CURVATURE;
D O I
10.1090/proc/15582
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study positive weak solutions of the quasilinear Lane-Emden equation -Qu = u(alpha) in Omega subset of R-n, where alpha >= n+2/n-2, for n >= 3, is supercritical and the operator Q, known as Finsler-Laplacian or anisotropic Laplacian, is defined by Qu := Sigma(n)(i=1)partial derivative/partial derivative x(i)(F(del u)F-xi i(del u)). Here, F-xi i = partial derivative F/partial derivative xi(i) and F : R-n -> [0, +infinity) is a convex function of C-2(R-n\{0}), that satisfies positive homogeneity of first order and other certain assumptions. We prove that the Hausdorff dimension of singular set of u is less than n-2 alpha+1/alpha-1.
引用
收藏
页码:179 / 190
页数:12
相关论文
共 50 条
  • [11] SINGULAR SOLUTIONS OF A LANE-EMDEN SYSTEM
    Cowan, Craig
    Razani, Abdolrahman
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (02) : 621 - 656
  • [12] Composite Lane-Emden Equation as a Nonlinear Poisson Equation
    N. Riazi
    M. Mohammadi
    International Journal of Theoretical Physics, 2012, 51 : 1276 - 1283
  • [13] Composite Lane-Emden Equation as a Nonlinear Poisson Equation
    Riazi, N.
    Mohammadi, M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (04) : 1276 - 1283
  • [14] Taylor series solution for Lane-Emden equation
    He, Ji-Huan
    Ji, Fei-Yu
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 57 (08) : 1932 - 1934
  • [15] CLASSICAL WAY OF LOOKING AT THE LANE-EMDEN EQUATION
    Tanriverdi, Tanfer
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 271 - 276
  • [16] Approximate implicit solution of a Lane-Emden equation
    Momoniat, E
    Harley, C
    NEW ASTRONOMY, 2006, 11 (07) : 520 - 526
  • [17] On General Solutions of Polytropes of Lane-Emden Equation in (r, P) Variables: A Review
    Vuppala, Nagaraju
    Rajashekar, M. N.
    IMPENDING INQUISITIONS IN HUMANITIES AND SCIENCES, ICIIHS-2022, 2024, : 364 - 369
  • [18] EXISTENCE OF NONLINEAR LANE-EMDEN EQUATION OF FRACTIONAL ORDER
    Ibrahim, Rabha W.
    MISKOLC MATHEMATICAL NOTES, 2012, 13 (01) : 39 - 52
  • [19] Lie group classification of the generalized Lane-Emden equation
    Khalique, C. Masood
    Muatjetjeja, Ben
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) : 405 - 410
  • [20] The supercritical Lane-Emden equation and its gradient flow
    Struwe, Michael
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2014, 25 (04) : 359 - 367