ADVERSARIAL DOMAIN SEPARATION AND ADAPTATION

被引:0
|
作者
Tsai, Jen-Chieh [1 ]
Chien, Jen-Tzung [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Elect & Comp Engn, Hsinchu, Taiwan
来源
2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING | 2017年
关键词
Deep learning; domain adaptation; latent features; adversarial learning; pattern classification;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traditional domain adaptation methods attempted to learn the shared representation for distribution matching between source domain and target domain where the individual information in both domains was not characterized. Such a solution suffers from the mixing problem of individual information with the shared features which considerably constrains the performance for domain adaptation. To relax this constraint, it is crucial to extract both shared information and individual information. This study captures both information via a new domain separation network where the shared features are extracted and purified via separate modeling of individual information in both domains. In particular, a hybrid adversarial learning is incorporated in a separation network as well as an adaptation network where the associated discriminators are jointly trained for domain separation and adaptation according to the minmax optimization over separation loss and domain discrepancy, respectively. Experiments on different tasks show the merit of using the proposed adversarial domain separation and adaptation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Adversarial domain adaptation using contrastive learning
    Azuma, Chiori
    Ito, Tomoyoshi
    Shimobaba, Tomoyoshi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [2] A Survey on Adversarial Domain Adaptation
    Mahta HassanPour Zonoozi
    Vahid Seydi
    Neural Processing Letters, 2023, 55 : 2429 - 2469
  • [3] Joint Adversarial Domain Adaptation
    Li, Shuang
    Liu, Chi Harold
    Xie, Binhui
    Su, Limin
    Ding, Zhengming
    Huang, Gao
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 729 - 737
  • [4] A Survey on Adversarial Domain Adaptation
    Zonoozi, Mahta HassanPour
    Seydi, Vahid
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 2429 - 2469
  • [5] Unsupervised domain adaptation with Joint Adversarial Variational AutoEncoder
    Li, Yuze
    Zhang, Yan
    Yang, Chunling
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [6] Prototype learning for adversarial domain adaptation
    Fang, Yuchun
    Chen, Chen
    Zhang, Wei
    Wu, Jiahua
    Zhang, Zhaoxiang
    Xie, Shaorong
    PATTERN RECOGNITION, 2024, 155
  • [7] Feature concatenation for adversarial domain adaptation
    Li, Jingyao
    Li, Zhanshan
    Lu, Shuai
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 169
  • [8] Deep adversarial domain adaptation network
    Wu, Lan
    Li, Chongyang
    Chen, Qiliang
    Li, Binquan
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (05)
  • [9] Stochastic Adversarial Learning for Domain Adaptation
    Chien, Jen-Tzung
    Huang, Ching-Wei
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [10] Domain compensatory adversarial networks for partial domain adaptation
    Junchu Huang
    Pengyu Zhang
    Zhiheng Zhou
    Kefeng Fan
    Multimedia Tools and Applications, 2021, 80 : 11255 - 11272