On the Sobolev and Hardy constants for the fractional Navier Laplacian

被引:13
作者
Musina, Roberta [1 ]
Nazarov, Alexander I. [2 ,3 ]
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
[2] Steklov Inst, St Petersburg Dept, St Petersburg 191023, Russia
[3] St Petersburg State Univ, St Petersburg 198504, Russia
关键词
Fractional Laplacians; Sobolev inequality; Hardy inequality; EXTENSION PROBLEM; INEQUALITIES;
D O I
10.1016/j.na.2014.09.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the coincidence of the Sobolev and Hardy constants relative to the "Dirichlet" and "Navier" fractional Laplacians of any real order m epsilon (0, n/2) over bounded domains in R-n. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:123 / 129
页数:7
相关论文
共 21 条
[1]  
[Anonymous], 1993, Differ. Integral Equ.
[2]  
[Anonymous], ARXIV14083568
[3]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[4]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[5]   Regularity of Radial Extremal Solutions for Some Non-Local Semilinear Equations [J].
Capella, Antonio ;
Davila, Juan ;
Dupaigne, Louis ;
Sire, Yannick .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) :1353-1384
[6]   Best constants for Sobolev inequalities for higher order fractional derivatives [J].
Cotsiolis, A ;
Tavoularis, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 295 (01) :225-236
[7]  
Davies EB, 1998, MATH Z, V227, P511, DOI 10.1007/PL00004389
[8]   Hardy inequalities with optimal constants and remainder terms [J].
Gazzola, F ;
Grunau, HC ;
Mitidieri, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) :2149-2168
[9]   Optimal Sobolev and Hardy-Rellich constants under Navier boundary conditions [J].
Gazzola, Filippo ;
Grunau, Hans-Christoph ;
Sweers, Guido .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (03) :475-486
[10]   Sharp Sobolev inequalities in critical dimensions [J].
Ge, YX .
MICHIGAN MATHEMATICAL JOURNAL, 2003, 51 (01) :27-45