Fracture toughness anomalies: Viewpoint of topological constraint theory

被引:77
作者
Bauchy, Mathieu [1 ]
Wang, Bu [1 ]
Wang, Mengyi [1 ]
Yu, Yingtian [1 ]
Qomi, Mohammad Javad Abdolhosseini [2 ]
Smedskjaer, Morten M. [3 ]
Bichara, Christophe [4 ,5 ]
Ulm, Franz-Josef [6 ,7 ]
Pellenq, Roland [4 ,5 ,6 ,7 ]
机构
[1] Univ Calif Los Angeles, Dept Civil & Environm Engn, Phys AmoRphous & Inorgan Solids Lab PARISlab, Los Angeles, CA 90095 USA
[2] Univ Calif Irvine, Henry Samueli Sch Engn, Dept Civil & Environm Engn, Irvine, CA 92697 USA
[3] Aalborg Univ, Dept Chem & Biosci, DK-9220 Aalborg, Denmark
[4] CNRS, Ctr Interdisciplinaire Nanosci Marseille, Campus Luminy, F-13288 Marseille 09, France
[5] Aix Marseille Univ, Campus Luminy, F-13288 Marseille 09, France
[6] MIT, Dept Civil & Environm Engn, Concrete Sustainabil Hub, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] MIT, MIT CNRS Joint Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Fracture toughness; Toughening; Crack blunting; Brittle-to-ductile transition; CALCIUM-SILICATE-HYDRATE; NETWORK GLASSES; RANGE ORDER; RIGIDITY; MODEL; FRAGILITY; SOLIDS;
D O I
10.1016/j.actamat.2016.09.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The relationship between composition, structure, and resistance to fracture remains poorly understood. Here, based on molecular dynamics simulations, we report that sodium silicate glasses and calcium silicate hydrates feature an anomalous maximum in fracture toughness. In the framework of topological constraint theory, this anomaly is correlated to a flexible-to-rigid transition, driven by pressure or composition for sodium silicate and calcium silicate hydrates, respectively. This topological transition, observed for an isostatic network, is also shown to correspond to a ductile-to-brittle transition. At this state, the network is rigid but free of eigen-stress and features stress relaxation through crack blunting, resulting in optimal resistance to fracture. Our topological approach could therefore enable the computational design of tough inorganic solids, which has long been a "holy grail" within the nonmetallic materials chemistry community. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:234 / 239
页数:6
相关论文
共 68 条
[1]   Composition and density of nanoscale calcium-silicate-hydrate in cement [J].
Allen, Andrew J. ;
Thomas, Jeffrey J. ;
Jennings, Hamlin M. .
NATURE MATERIALS, 2007, 6 (04) :311-316
[2]  
[Anonymous], 2003, MECANIQUE RUPTURE FR
[3]  
[Anonymous], 2005, FRACTURE MECH FUNDAM
[4]   MATERIAL WITNESS CONCRETE MIXING FOR GORILLAS [J].
Ball, Philip .
NATURE MATERIALS, 2015, 14 (05) :472-472
[5]  
Barenblatt G., 1962, Advances in applied mechanics, V7, P104
[6]   Fracture toughness of calcium-silicate-hydrate from molecular dynamics simulations [J].
Bauchy, M. ;
Laubie, H. ;
Qomi, M. J. Abdolhosseini ;
Hoover, C. G. ;
Ulm, F. -J. ;
Pellenq, R. J. -M. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2015, 419 :58-64
[7]   Densified network glasses and liquids with thermodynamically reversible and structurally adaptive behaviour [J].
Bauchy, M. ;
Micoulaut, M. .
NATURE COMMUNICATIONS, 2015, 6
[8]  
Bauchy M, 2014, COMPUTATIONAL MODELLING OF CONCRETE STRUCTURES, VOL 1, P169
[9]   Order and disorder in calcium-silicate-hydrate [J].
Bauchy, M. ;
Qomi, M. J. Abdolhosseini ;
Ulm, F. -J. ;
Pellenq, R. J. -M. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (21)
[10]   Percolative heterogeneous topological constraints and fragility in glass-forming liquids [J].
Bauchy, M. ;
Micoulaut, M. .
EPL, 2013, 104 (05)