Partially APN Boolean functions and classes of functions that are not APN infinitely often

被引:6
作者
Budaghyan, Lilya [1 ]
Kaleyski, Nikolay S. [1 ]
Kwon, Soonhak [2 ]
Riera, Constanza [3 ]
Stanica, Pantelimon [4 ]
机构
[1] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
[2] Sungkyunkwan Univ, Dept Math, Suwon 16419, South Korea
[3] Western Norway Univ Appl Sci, Dept Comp Math & Phys, N-5020 Bergen, Norway
[4] Naval Postgrad Sch, Dept Appl Math, Monterey, CA 93943 USA
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2020年 / 12卷 / 03期
基金
新加坡国家研究基金会;
关键词
Boolean function; Almost perfect nonlinear (APN); Partial APN; Walsh-Hadamard coefficients;
D O I
10.1007/s12095-019-00372-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we define a notion of partial APNness and find various characterizations and constructions of classes of functions satisfying this condition. We connect this notion to the known conjecture that APN functions modified at a point cannot remain APN. In the second part of the paper, we find conditions for some transformations not to be partially APN, and in the process, we find classes of functions that are never APN for infinitely many extensions of the prime field F2 extending some earlier results of Leander and Rodier.
引用
收藏
页码:527 / 545
页数:19
相关论文
共 15 条
  • [1] [Anonymous], 2014, Construction and Analysis of Cryptographic Functions
  • [2] [Anonymous], 2017, CRYPTOGRAPHIC BOOLEA
  • [3] Aubry Y, 2010, CONTEMP MATH, V518, P23
  • [4] On Upper Bounds for Algebraic Degrees of APN Functions
    Budaghyan, Lilya
    Carlet, Claude
    Helleseth, Tor
    Li, Nian
    Sun, Bo
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (06) : 4399 - 4411
  • [5] Budaghyan L, 2009, 2009 IEEE INFORMATION THEORY WORKSHOP (ITW 2009), P374, DOI 10.1109/ITW.2009.5351383
  • [6] On some block ciphers and imprimitive groups
    Caranti, A.
    Volta, F. Dalla
    Sala, M.
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2009, 20 (5-6) : 339 - 350
  • [7] Carlet C., 2010, BOOLEAN MODELS METHO, P398, DOI DOI 10.1017/CBO9780511780448.012
  • [8] Carlet C., 2010, Encyclopedia of Mathematics and Its Applications, P257, DOI [10.1017/CBO9780511780448.011, DOI 10.1017/CBO9780511780448.011]
  • [9] Chabaud F., 1995, Advances in Cryptology - EUROCRYPT '94. Workshop on the Theory and Application of Cryptographic Techniques. Proceedings, P356, DOI 10.1007/BFb0053450
  • [10] Charpin P., 2017, INT J INFORM CODING, V4, P170, DOI DOI 10.1504/IJICOT.2017.083844