On the theory of the skewon field: from electrodynamics to gravity

被引:21
作者
Hehl, FW
Obukhov, YN [1 ]
Rubilar, GF
Blagojevic, M
机构
[1] Univ Cologne, Inst Theoret Phys, D-50923 Cologne, Germany
[2] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA
[3] Moscow MV Lomonosov State Univ, Dept Theoret Phys, Moscow 117234, Russia
[4] Univ Concepcion, Dept Fis, Concepcion 160C, Chile
[5] Inst Phys, Belgrade 11001, Serbia Monteneg
[6] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
关键词
classical electrodynamics; skewon field; general relativity; Einstein-Cartan theory; dilaton field; axion field;
D O I
10.1016/j.physleta.2005.06.033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Maxwell equations expressed in terms of the excitation H = (h, D) and the field strength F = (E, B) are metric-free and require an additional constitutive law in order to represent a complete set of field equations. In vacuum, we call this law the "spacetime relation". We assume it to be local and linear. Then H = H(F) encompasses 36 permittivity/permeability functions characterizing the electromagnetic properties of the vacuum. These 36 functions can be grouped into 20 + 15 + 1 functions. Thereof, 20 functions finally yield the dilaton field and the metric of spacetime, I function represents the axion field, and 15 functions the (traceless) skewon field S-i(j) (S slash), with i, j = 0, 1, 2, 3. The hypothesis of the existence of $(j)(i) was proposed by three of us in 2002. In this Letter we discuss some of the properties of the skewon field, like its electromagnetic energy density, its possible coupling to Einstein-Cartan gravity, and its corresponding gravitational energy. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:14 / 24
页数:11
相关论文
共 35 条
[1]  
[Anonymous], GRAVITATION GAUGE SY
[2]  
Catto D., 1980, Bulletin de l'Academie Polonaise des Sciences, Serie des Sciences Physiques et Astronomiques, V28, P179
[3]   On the axioms of topological electromagnetism [J].
Delphenich, DH .
ANNALEN DER PHYSIK, 2005, 14 (06) :347-377
[4]   WEYL SCALINGS AND SPINOR MATTER INTERACTIONS IN SCALAR-TENSOR THEORIES OF GRAVITATION [J].
DERELI, T ;
TUCKER, RW .
PHYSICS LETTERS B, 1982, 110 (3-4) :206-210
[5]  
Eddington A.S., 1924, The Mathematical Theory of Relativity
[6]  
Einstein A, 1916, SITZBER K PREUSS AKA, P184
[7]  
Einstein A., 1955, MEANING RELATIVITY
[8]   Volume elements of spacetime and a quartet of scalar fields [J].
Gronwald, F ;
Muench, U ;
Macias, A ;
Hehl, FW .
PHYSICAL REVIEW D, 1998, 58 (08)
[9]  
GRONWALD F, 1996, P INT SCH COSM GRAV, P148
[10]  
Hehl F W, 2003, FDN CLASSICAL ELECTR