Fuzzy-model-based sampled-data chaotic synchronisation under the input constraints consideration

被引:16
作者
Kim, Han Sol [1 ]
Park, Jin Bae [1 ]
Joo, Young Hoon [2 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, 50 Yonsei Ro, Seoul, South Korea
[2] Kunsan Natl Univ, Dept Control & Robot Engn, 558 Daehak Ro, Gunsan Si, Jeollabuk Do, South Korea
基金
新加坡国家研究基金会;
关键词
feedback; linear matrix inequalities; synchronisation; nonlinear control systems; chaos; sampled data systems; fuzzy control; stability; Lyapunov methods; fuzzy-model-based sampled-data chaotic synchronisation; sampled-data chaos synchronisation controller; drive chaotic system; response chaotic system; constant sampling period; linear matrix inequality-based sufficient conditions; modelling error term; synchronisation performance; input constraints; sampled-data fuzzy chaotic synchronisation; state vectors; synchronisation error dynamics stabilisaion; H-infinity criterion; identical chaotic systems synchronisation; time-dependent fuzzy Lyapunov-Krasovskii functional; LYAPUNOV FUNCTION-APPROACH; LURE SYSTEMS; STABILIZATION; CONTROLLER;
D O I
10.1049/iet-cta.2018.5117
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, the authors propose a novel sampled-data fuzzy chaotic synchronisation scheme under the input constraints consideration. The sampled-data chaos synchronisation controller feedbacks the synchronisation error between the state vectors of both the drive chaotic system and the response chaotic system at a constant sampling period. The chaotic synchronisation is achieved by stabilising the synchronisation error dynamics based on the H-infinity criterion. Linear matrix inequality-based sufficient conditions for synchronising two identical chaotic systems are derived based on the newly proposed time-dependent fuzzy Lyapunov-Krasovskii functional. Unlike previous approaches, the modelling error term is fully addressed so as to enhance the synchronisation performance. Finally, the effectiveness of the proposed method is validated through a numerical example.
引用
收藏
页码:288 / 296
页数:9
相关论文
共 31 条
  • [1] Adaptive fuzzy control-based projective synchronization of uncertain nonaffine chaotic systems
    Boulkroune, Abdesselem
    Bouzeriba, Amel
    Hamel, Sara
    Bouden, Toufik
    [J]. COMPLEXITY, 2015, 21 (02) : 180 - 192
  • [2] SYNCHRONIZING CHAOTIC CIRCUITS
    CARROLL, TL
    PECORA, LM
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04): : 453 - 456
  • [3] Adaptive fuzzy approach to control unified chaotic systems
    Chen, Bing
    Liu, Xiaoping
    Tong, Shaocheng
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 34 (04) : 1180 - 1187
  • [4] Chen T., 2012, OPTIMAL SAMPLED DATA
  • [5] A Fuzzy-Model-Based Chaotic Synchronization and Its Implementation on a Secure Communication System
    Chou, Hao-Gong
    Chuang, Chun-Fu
    Wang, Wen-June
    Lin, Jia-Chin
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2013, 8 (12) : 2177 - 2185
  • [6] A new discrete-time robust stability conditions
    de Oliveira, MC
    Bernussou, J
    Geromel, JC
    [J]. SYSTEMS & CONTROL LETTERS, 1999, 37 (04) : 261 - 265
  • [7] A refined input delay approach to sampled-data control
    Fridman, Emilia
    [J]. AUTOMATICA, 2010, 46 (02) : 421 - 427
  • [8] Improved stability criteria for synchronization of chaotic Lur'e systems using sampled-data control
    Ge, Chao
    Zhang, Weiwei
    Li, Wei
    Sun, Xiaochuan
    [J]. NEUROCOMPUTING, 2015, 151 : 215 - 222
  • [9] An integral inequality in the stability problem of time-delay systems
    Gu, KQ
    [J]. PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 2805 - 2810
  • [10] H∞ synchronization of chaotic systems using output feedback control design
    Hou, Yi-You
    Liao, Teh-Lu
    Yan, Jun-Juh
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (01) : 81 - 89