Numerical solutions for the Helmholtz boundary value problems of anisotropic homogeneous media

被引:13
作者
Azis, Moh Ivan [1 ]
机构
[1] Hasanuddin Univ, Dept Math, Makassar, Indonesia
关键词
Boundary element method; Helmholtz boundary value problems; Anisotropic homogeneous media; ELEMENT-METHOD;
D O I
10.1016/j.jcp.2019.01.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Numerical solutions to boundary value problems governed by two-dimensional Helmholtz equation for anisotropic media is obtained. The standard BEM has been employed to obtain the solutions. The results show that the anisotropy of the medium under consideration causes effects on the solution. The anisotropy of the medium should be taken into account for the implementation of the modeling and computation. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:42 / 51
页数:10
相关论文
共 23 条
  • [1] Abramowitz M., 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
  • [2] Nonlinear transient heat conduction problems for a class of inhomogeneous anisotropic materials by BEM
    Azis, M. I.
    Clements, D. L.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2008, 32 (12) : 1054 - 1060
  • [3] Azis MI, 2014, FAR E J MATH SCI, V87, P173
  • [4] Azis MI, 2017, FAR E J MATH SCI, V101, P2405, DOI DOI 10.17654/MS101112405
  • [5] Azis MI, 2014, Far East J Math Sci, V89, P51
  • [6] A boundary element method with analytical integration for deformation of inhomogeneous elastic materials
    Azis, Moh. Ivan
    Toaha, Syamsuddin
    Bahri, Mawardi
    Ilyas, Nirwan
    [J]. 2ND INTERNATIONAL CONFERENCE ON SCIENCE (ICOS), 2018, 979
  • [7] On some examples of pollutant transport problems solved numerically using the boundary element method
    Azis, Moh. Ivan
    Kasbawati
    Haddade, Amiruddin
    Thamrin, Sri Astuti
    [J]. 2ND INTERNATIONAL CONFERENCE ON SCIENCE (ICOS), 2018, 979
  • [8] A symmetric Trefftz-DG formulation based on a local boundary element method for the solution of the Helmholtz equation
    Barucq, H.
    Bendali, A.
    Fares, M.
    Mattesi, V.
    Tordeux, S.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 330 : 1069 - 1092
  • [9] BOUNDARY-CONDITIONS FOR THE NUMERICAL-SOLUTION OF ELLIPTIC-EQUATIONS IN EXTERIOR REGIONS
    BAYLISS, A
    GUNZBURGER, M
    TURKEL, E
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (02) : 430 - 451
  • [10] RADIATION BOUNDARY-CONDITIONS FOR WAVE-LIKE EQUATIONS
    BAYLISS, A
    TURKEL, E
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (06) : 707 - 725