Power allocation for full-duplex NOMA relaying based underlay D2D communications

被引:1
作者
Li, Song [1 ]
Li, Shuo [1 ]
Sun, Yanjing [1 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
来源
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS | 2019年 / 13卷 / 01期
基金
中国国家自然科学基金;
关键词
device-to-device; full-duplex; NOMA; power allocation; NONORTHOGONAL MULTIPLE-ACCESS; RESOURCE-ALLOCATION; NETWORKS;
D O I
10.3837/tiis.2019.01.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a full-duplex NOMA relaying based underlay device-to-device (D2D) communication scheme is proposed, in which D2D transmitter assists cellular downlink transmission as a full-duplex relay. Specifically, D2D transmitter receives signals from base station and transmits the superposition signals to D2D receiver and cellular user in NOMA scheme simultaneously. Furthermore, we investigate the power allocation under the proposed scheme, aiming to maximize D2D link's achievable transmit rate under cellular link's transmit rate constraint and total power constraint. To tackle the power allocation problem, we first propose a power allocation method based on linear fractional programming. In addition, we derive closed-form expressions of the optimal transmit power for base station and D2D transmitter. Simulation results show that the performance of two solutions matches well and the proposed full-duplex NOMA relaying based underlay D2D communication scheme outperforms existing full-duplex relaying based D2D communication scheme.
引用
收藏
页码:16 / 33
页数:18
相关论文
共 22 条
[1]   What Will 5G Be? [J].
Andrews, Jeffrey G. ;
Buzzi, Stefano ;
Choi, Wan ;
Hanly, Stephen V. ;
Lozano, Angel ;
Soong, Anthony C. K. ;
Zhang, Jianzhong Charlie .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1065-1082
[2]  
[Anonymous], CVX: MATLAB software for disciplined convex programming
[3]  
Boyd Stephen P., 2014, Convex Optimization
[4]   Exploiting Social Ties for Cooperative D2D Communications: A Mobile Social Networking Case [J].
Chen, Xu ;
Proulx, Brian ;
Gong, Xiaowen ;
Zhang, Junshan .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2015, 23 (05) :1471-1484
[5]   Resource Allocation in Wireless Powered Communication Networks With Non-Orthogonal Multiple Access [J].
Chingoska, Hristina ;
Hadzi-Velkov, Zoran ;
Nikoloska, Ivana ;
Zlatanov, Nikola .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2016, 5 (06) :684-687
[6]  
Dai LL, 2015, IEEE COMMUN MAG, V53, P74, DOI 10.1109/MCOM.2015.7263349
[7]   Application of Non-Orthogonal Multiple Access in LTE and 5G Networks [J].
Ding, Zhiguo ;
Liu, Yuanwei ;
Choi, Jinho ;
Sun, Qi ;
Elkashlan, Maged ;
I, Chih-Lin ;
Poor, H. Vincent .
IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (02) :185-191
[8]   Cooperative Non-Orthogonal Multiple Access in 5G Systems [J].
Ding, Zhiguo ;
Peng, Mugen ;
Poor, H. Vincent .
IEEE COMMUNICATIONS LETTERS, 2015, 19 (08) :1462-1465
[9]   Energy-Efficient Resource Allocation for Downlink Non-Orthogonal Multiple Access Network [J].
Fang, Fang ;
Zhang, Haijun ;
Cheng, Julian ;
Leung, Victor C. M. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2016, 64 (09) :3722-3732
[10]   A Survey of 5G Network: Architecture and Emerging Technologies [J].
Gupta, Akhil ;
Jha, Rakesh Kumar .
IEEE ACCESS, 2015, 3 :1206-1232