Semantic image segmentation for sea ice parameters recognition using deep convolutional neural networks

被引:29
|
作者
Zhang, Chengqian [1 ]
Chen, Xiaodong [1 ]
Ji, Shunying [1 ]
机构
[1] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Semantic sea -ice image segmentation; Deep convolutional neural networks; Multi -scale features; Attention module; CLASSIFICATION;
D O I
10.1016/j.jag.2022.102885
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
An accurate algorithm for sea ice segmentation is critical for monitoring sea ice parameters of ship navigation in ice-covered seas, as it can automatically extract ice objects and corresponding information to compute essential parameters such as surface ice concentration and ice floe size. In this paper, based on digital images captured by onboard cameras, a novel network called Ice-Deeplab for pixel-wise ice image segmentation is proposed. The Ice-Deeplab network is constructed using the deep convolutional neural network Deeplab and is modified with an attention module and an improved decoding structure. To investigate its reliability, the Ice-Deeplab network is applied to a 320-image dataset, with 80% for training and 20% for validation. The experiments demonstrated that the proposed Ice-Deeplab yields better segmentation results than the original Deeplab model under different validation scenarios, achieving an overall accuracy of 90.5% among the classes sea-ice, ocean, and sky. More-over, the proposed model was applied to un-labelled test data to demonstrate its generalisation ability for real-time ice segmentation.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Sea Ice Image Semantic Segmentation Using Deep Neural Networks
    Dowden, Benjamin
    De Silva, Oscar
    Huang, Weimin
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [2] Semantic Image Segmentation with Deep Convolutional Neural Networks and Quick Shift
    Zhang, Sanxing
    Ma, Zhenhuan
    Zhang, Gang
    Lei, Tao
    Zhang, Rui
    Cui, Yi
    SYMMETRY-BASEL, 2020, 12 (03):
  • [3] Using convolutional neural networks for image semantic segmentation and object detection
    Li, Shuangmei
    Huang, Chengning
    SYSTEMS AND SOFT COMPUTING, 2024, 6
  • [4] SMSnet: Semantic Motion Segmentation using Deep Convolutional Neural Networks
    Vertens, Johan
    Valada, Abhinav
    Burgard, Wolfram
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 582 - 589
  • [5] Deep Context Convolutional Neural Networks for Semantic Segmentation
    Yang, Wenbin
    Zhou, Quan
    Fan, Yawen
    Gao, Guangwei
    Wu, Songsong
    Ou, Weihua
    Lu, Huimin
    Cheng, Jie
    Latecki, Longin Jan
    COMPUTER VISION, PT I, 2017, 771 : 696 - 704
  • [6] Deep convolutional neural networks for semantic segmentation of cracks
    Wang, Jia-Ji
    Liu, Yu-Fei
    Nie, Xin
    Mo, Y. L.
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (01):
  • [7] On the contextual aspects of using deep convolutional neural network for semantic image segmentation
    Wang, Chunlai
    Mauch, Lukas
    Saxena, Mehul Manoj
    Yang, Bin
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (05)
  • [8] Deep Dual-Stream Convolutional Neural Networks for Cardiac Image Semantic Segmentation
    Hu, Hengqi
    Fang, Bin
    Ran, Yuting
    Wei, Xuekai
    Xian, Weizhi
    Zhou, Mingliang
    Kwong, Sam
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (05) : 7440 - 7448
  • [9] Using Deep Convolutional Neural Networks for Neonatal Brain Image Segmentation
    Ding, Yang
    Acosta, Rolando
    Enguix, Vicente
    Suffren, Sabrina
    Ortmann, Janosch
    Luck, David
    Dolz, Jose
    Lodygensky, Gregory A.
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [10] Traffic Scene Semantic Segmentation by Using Several Deep Convolutional Neural Networks
    Kherraki, Amine
    Maqbool, Muaz
    El Ouazzani, Rajae
    2021 3RD IEEE MIDDLE EAST AND NORTH AFRICA COMMUNICATIONS CONFERENCE (MENACOMM), 2021, : 1 - 6