EIGENVALUES OF THE DRIFTING LAPLACIAN ON SMOOTH METRIC MEASURE SPACES

被引:8
作者
Zeng, Lingzhong [1 ]
Sun, He-Jun [2 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang, Jiangxi, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
drifting Laplacian; eigenvalue; metric measure space; Ricci soliton; self-shrinker; DIRICHLET LAPLACIANS; RICCI; BOUNDS; SINGULARITIES; INEQUALITIES; DIAMETER; SOLITONS; RATIOS;
D O I
10.2140/pjm.2022.319.439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is a fundamental task to estimate the eigenvalues of the drifting Laplacian in geometric analysis. Here, we prove a general formula for the Dirichlet eigenvalue problem of the drifting Laplacian. Using this formula, we establish some eigenvalue inequalities of the drifting Laplacian on some important smooth metric measure spaces, including Riemannian manifolds isometrically immersed in a Euclidean space, gradient Ricci solitons, selfshrinkers, manifolds admitting certain special functions, metric measure spaces with Bakry-Emery curvature conditions, and round cylinders. We use new and interesting techniques to construct trial functions and deal with some inequalities. For example, on gradient Ricci solitons, we construct the test functions via Busemann functions associated with the geodesics to give an intrinsic inequality and use geometric rigidity to determine eigenvalues under looser conditions. Recall that singularity classification of Ricci flows has experienced considerable development in geometric analysis, and geometric analysts obtained many important and interesting results. We apply some of them to estimate the eigenvalues of the drifting Laplacian in our settings.
引用
收藏
页码:439 / 470
页数:32
相关论文
共 50 条
  • [41] NEW CHARACTERIZATIONS OF RICCI CURVATURE ON RCD METRIC MEASURE SPACES
    Han, Bang-Xian
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (10) : 4915 - 4927
  • [42] Eigenvalue inequalities for the buckling problem of the drifting Laplacian on Ricci solitons
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Wu, Chuanxi
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) : 5533 - 5564
  • [43] Positive mass and Dirac operators on weighted manifolds and smooth metric measure spaces
    Law, Michael B.
    Lopez, Isaac M.
    Santiago, Daniel
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2025, 209
  • [44] Discrepancy and Numerical Integration on Metric Measure Spaces
    Brandolini, Luca
    Chen, William W. L.
    Colzani, Leonardo
    Gigante, Giacomo
    Travaglini, Giancarlo
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (01) : 328 - 369
  • [45] MARKED METRIC MEASURE SPACES
    Depperschmidt, Andrej
    Greven, Andreas
    Pfaffelhuber, Peter
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 174 - 188
  • [46] BMO SPACES FOR NONDOUBLING METRIC MEASURE SPACES
    Kosz, Dariusz
    [J]. PUBLICACIONS MATEMATIQUES, 2020, 64 (01) : 103 - 119
  • [47] Eigenvalues of the bi-Xin-Laplacian on complete Riemannian manifolds
    Hao, Xiaotian
    Zeng, Lingzhong
    [J]. COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (02): : 162 - 176
  • [48] About Bounds for Eigenvalues of the Laplacian with Density
    Ndiaye, Aissatou Mossele
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [49] Compactness of embeddings of sobolev type on metric measure spaces
    Ivanishko, I. A.
    Krotov, V. G.
    [J]. MATHEMATICAL NOTES, 2009, 86 (5-6) : 775 - 788
  • [50] Diameter Bounded Equal Measure Partitions of Ahlfors Regular Metric Measure Spaces
    Giacomo Gigante
    Paul Leopardi
    [J]. Discrete & Computational Geometry, 2017, 57 : 419 - 430