EIGENVALUES OF THE DRIFTING LAPLACIAN ON SMOOTH METRIC MEASURE SPACES

被引:8
|
作者
Zeng, Lingzhong [1 ]
Sun, He-Jun [2 ]
机构
[1] Jiangxi Normal Univ, Sch Math & Stat, Nanchang, Jiangxi, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
drifting Laplacian; eigenvalue; metric measure space; Ricci soliton; self-shrinker; DIRICHLET LAPLACIANS; RICCI; BOUNDS; SINGULARITIES; INEQUALITIES; DIAMETER; SOLITONS; RATIOS;
D O I
10.2140/pjm.2022.319.439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is a fundamental task to estimate the eigenvalues of the drifting Laplacian in geometric analysis. Here, we prove a general formula for the Dirichlet eigenvalue problem of the drifting Laplacian. Using this formula, we establish some eigenvalue inequalities of the drifting Laplacian on some important smooth metric measure spaces, including Riemannian manifolds isometrically immersed in a Euclidean space, gradient Ricci solitons, selfshrinkers, manifolds admitting certain special functions, metric measure spaces with Bakry-Emery curvature conditions, and round cylinders. We use new and interesting techniques to construct trial functions and deal with some inequalities. For example, on gradient Ricci solitons, we construct the test functions via Busemann functions associated with the geodesics to give an intrinsic inequality and use geometric rigidity to determine eigenvalues under looser conditions. Recall that singularity classification of Ricci flows has experienced considerable development in geometric analysis, and geometric analysts obtained many important and interesting results. We apply some of them to estimate the eigenvalues of the drifting Laplacian in our settings.
引用
收藏
页码:439 / 470
页数:32
相关论文
共 50 条
  • [21] Eigenvalue inequalities of elliptic operators in weighted divergence form on smooth metric measure spaces
    Zhu, Yuming
    Liu, Gusheng
    Du, Feng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [22] RIGIDITY OF CLOSED METRIC MEASURE SPACES WITH NONNEGATIVE CURVATURE
    Wu, Jia-Yong
    KODAI MATHEMATICAL JOURNAL, 2016, 39 (03) : 489 - 499
  • [23] GAP THEOREMS FOR ENDS OF SMOOTH METRIC MEASURE SPACES
    Hua, Bobo
    Wu, Jia-Yong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (11) : 4947 - 4957
  • [24] Estimates for eigenvalues of the bi-drifting Laplacian operator
    Feng Du
    Chuanxi Wu
    Guanghan Li
    Changyu Xia
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 703 - 726
  • [25] Eigenvalues of the bi-drifting Laplacian on the complete noncompact Riemannian manifolds
    Xinyang Li
    Jing Mao
    Lingzhong Zeng
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [26] On the Laplacian eigenvalues and metric parameters of hypergraphs
    Rodríguez, JA
    LINEAR & MULTILINEAR ALGEBRA, 2002, 50 (01) : 1 - 14
  • [27] ESTIMATES FOR EIGENVALUES OF A SYSTEM OF ELLIPTIC EQUATIONS WITH DRIFT AND OF BI-DRIFTING LAPLACIAN
    Du, Feng
    Bezerra, Adriano Cavalcante
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (02) : 475 - 491
  • [28] Index estimates of compact hypersurfaces in smooth metric measure spaces
    Batista, Marcio
    Martins, Matheus B.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [29] A YAMABE-TYPE PROBLEM ON SMOOTH METRIC MEASURE SPACES
    Case, Jeffrey S.
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 101 (03) : 467 - 505
  • [30] Universal inequalities on complete noncompact smooth metric measure spaces
    Yanli Li
    Feng Du
    Archiv der Mathematik, 2017, 109 : 591 - 598