HLA-VBSeq: accurate HLA typing at full resolution from whole-genome sequencing data

被引:67
作者
Nariai, Naoki [1 ]
Kojima, Kaname [1 ]
Saito, Sakae [1 ]
Mimori, Takahiro [1 ]
Sato, Yukuto [1 ]
Kawai, Yosuke [1 ]
Yamaguchi-Kabata, Yumi [1 ]
Yasuda, Jun [1 ]
Nagasaki, Masao [1 ]
机构
[1] Tohoku Univ, Tohoku Med Megabank Org, Dept Integrat Genom, Aoba Ku, Sendai, Miyagi 9808573, Japan
关键词
CLASS-II; ALIGNMENT; RNA; MAP;
D O I
10.1186/1471-2164-16-S2-S7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Human leucocyte antigen (HLA) genes play an important role in determining the outcome of organ transplantation and are linked to many human diseases. Because of the diversity and polymorphisms of HLA loci, HLA typing at high resolution is challenging even with whole-genome sequencing data. Results: We have developed a computational tool, HLA-VBSeq, to estimate the most probable HLA alleles at full (8-digit) resolution from whole-genome sequence data. HLA-VBSeq simultaneously optimizes read alignments to HLA allele sequences and abundance of reads on HLA alleles by variational Bayesian inference. We show the effectiveness of the proposed method over other methods through the analysis of predicting HLA types for HLA class I (HLA-A, -B and -C) and class II (HLA-DQA1,-DQB1 and -DRB1) loci from the simulation data of various depth of coverage, and real sequencing data of human trio samples. Conclusions: HLA-VBSeq is an efficient and accurate HLA typing method using high-throughput sequencing data without the need of primer design for HLA loci. Moreover, it does not assume any prior knowledge about HLA allele frequencies, and hence HLA-VBSeq is broadly applicable to human samples obtained from a genetically diverse population.
引用
收藏
页数:6
相关论文
共 21 条
[1]   Inference of high resolution HLA types using genome-wide RNA or DNA sequencing reads [J].
Bai, Yu ;
Ni, Min ;
Cooper, Blerta ;
Wei, Yi ;
Fury, Wen .
BMC GENOMICS, 2014, 15
[2]   HLA typing from RNA-Seq sequence reads [J].
Boegel, Sebastian ;
Loewer, Martin ;
Schaefer, Michael ;
Bukur, Thomas ;
de Graaf, Jos ;
Boisguerin, Valesca ;
Tuereci, Oezlem ;
Diken, Mustafa ;
Castle, John C. ;
Sahin, Ugur .
GENOME MEDICINE, 2012, 4
[3]   HLA and HIV-1:: Heterozygote advantage and B*35-Cw*04 disadvantage [J].
Carrington, M ;
Nelson, GW ;
Martin, MP ;
Kissner, T ;
Vlahov, D ;
Goedert, JJ ;
Kaslow, R ;
Buchbinder, S ;
Hoots, K ;
O'Brien, SJ .
SCIENCE, 1999, 283 (5408) :1748-1752
[4]   HLA class I and class II DNA typing and the origin of Basques [J].
Comas, D ;
Mateu, E ;
Calafell, F ;
Pérez-Lezaun, A ;
Bosch, E ;
Martínez-Arias, R ;
Bertranpetit, J .
TISSUE ANTIGENS, 1998, 51 (01) :30-40
[5]   A SNP resource for human chromosome 22: Extracting dense clusters of SNPs from the genomic sequence [J].
Dawson, E ;
Chen, Y ;
Hunt, S ;
Smink, LJ ;
Hunt, A ;
Rice, K ;
Livingston, S ;
Bumpstead, S ;
Bruskiewich, R ;
Sham, P ;
Ganske, R ;
Adams, M ;
Kawasaki, K ;
Shimizu, N ;
Minoshima, S ;
Roe, B ;
Bentley, D ;
Dunham, I .
GENOME RESEARCH, 2001, 11 (01) :170-178
[6]   Immunogenetics of HLA null alleles: implications for blood stem cell transplantation [J].
Elsner, HA ;
Blasczyk, R .
TISSUE ANTIGENS, 2004, 64 (06) :687-695
[7]   Next-generation sequencing for HLA typing of class I loci [J].
Erlich, Rachel L. ;
Jia, Xiaoming ;
Anderson, Scott ;
Banks, Eric ;
Gao, Xiaojiang ;
Carrington, Mary ;
Gupta, Namrata ;
DePristo, Mark A. ;
Henn, Matthew R. ;
Lennon, Niall J. ;
de Bakker, Paul I. W. .
BMC GENOMICS, 2011, 12
[8]   Gene map of the extended human MHC [J].
Roger Horton ;
Laurens Wilming ;
Vikki Rand ;
Ruth C. Lovering ;
Elspeth A. Bruford ;
Varsha K. Khodiyar ;
Michael J. Lush ;
Sue Povey ;
C. Conover Talbot ;
Mathew W. Wright ;
Hester M. Wain ;
John Trowsdale ;
Andreas Ziegler ;
Stephan Beck .
Nature Reviews Genetics, 2004, 5 (12) :889-899
[9]   Phase-defined complete sequencing of the HLA genes by next-generation sequencing [J].
Hosomichi, Kazuyoshi ;
Jinam, Timothy A. ;
Mitsunaga, Shigeki ;
Nakaoka, Hirofumi ;
Inoue, Ituro .
BMC GENOMICS, 2013, 14
[10]   An introduction to variational methods for graphical models [J].
Jordan, MI ;
Ghahramani, Z ;
Jaakkola, TS ;
Saul, LK .
MACHINE LEARNING, 1999, 37 (02) :183-233