Orthogonal tensor decompositions

被引:269
作者
Kolda, TG [1 ]
机构
[1] Sandia Natl Labs, Computat Sci & Math Res Dept, Livermore, CA 94551 USA
关键词
tensor decomposition; singular value decomposition; principal components analysis; multidimensional arrays;
D O I
10.1137/S0895479800368354
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We explore the orthogonal decomposition of tensors ( also known as multidimensional arrays or n-way arrays) using two different definitions of orthogonality. We present numerous examples to illustrate the difficulties in understanding such decompositions. We conclude with a counterexample to a tensor extension of the Eckart-Young SVD approximation theorem by Leibovici and Sabatier [Linear Algebra Appl., 269 (1998), pp. 307-329].
引用
收藏
页码:243 / 255
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 1989, ORTHOGONAL TENSOR DE
[2]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[3]  
Coppi R., 1989, MULTIWAY DATA ANAL
[4]  
DELATHAUWER L, 1997, THESIS KATHOLIEKE U
[5]   THE APPROXIMATION OF ONE MATRIX BY ANOTHER OF LOWER RANK [J].
Eckart, Carl ;
Young, Gale .
PSYCHOMETRIKA, 1936, 1 (03) :211-218
[6]  
FRANC A, 1989, MULTIWAY DATA ANAL, P19
[7]  
Franc A., 1992, THESIS U MONTPELLIER
[8]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[9]   AN APPROACH TO N-MODE COMPONENTS-ANALYSIS [J].
KAPTEYN, A ;
NEUDECKER, H ;
WANSBEEK, T .
PSYCHOMETRIKA, 1986, 51 (02) :269-275
[10]   PRINCIPAL COMPONENT ANALYSIS OF 3-MODE DATA BY MEANS OF ALTERNATING LEAST-SQUARES ALGORITHMS [J].
KROONENBERG, PM ;
DELEEUW, J .
PSYCHOMETRIKA, 1980, 45 (01) :69-97