Asymptotics for the time dependent Ginzburg-Landau equations

被引:3
作者
Fan, JS [1 ]
Ding, SJ
机构
[1] Nanjing Forestry Univ, Basic Courses Div, Nanjing 210037, Jiangsu, Peoples R China
[2] S China Normal Univ, Dept Math, Guangzhou 510631, Guangdong, Peoples R China
[3] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
关键词
asymptotic behavior; Ginzburg-Landau equations; heat flow for harmonic maps;
D O I
10.1006/jdeq.1998.3539
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that as epsilon --> 0 the solution of the complex Ginzburg-Landau equation u(t) - Delta u = (1/epsilon(2)) u(1-\u\(2)), in Omega x R+ converges to the unique solution of the heat flow for harmonic maps Into S-1 under the assumption that the initial and boundary maps have zero degree. (C) 1999 Academic Press.
引用
收藏
页码:241 / 255
页数:15
相关论文
共 5 条
[1]   ASYMPTOTICS FOR THE MINIMIZATION OF A GINZBURG-LANDAU FUNCTIONAL [J].
BETHUEL, F ;
BREZIS, H ;
HELEIN, F .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (02) :123-148
[2]  
BETHUEL F, 1994, GINZBURGLANDAU VORTI
[3]   THE WEAK SOLUTIONS TO THE EVOLUTION PROBLEMS OF HARMONIC MAPS [J].
CHEN, YM .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :69-74
[4]  
Friedman A., 1964, Partial Differential Equations of Parabolic Type