Analysis of neural potential of human umbilical cord blood-derived multipotent mesenchymal stem cells in response to a range of neurogenic stimuli

被引:26
作者
Zwart, Isabel [1 ,2 ]
Hill, Andrew J. [1 ,2 ]
Girdlestone, John [2 ]
Manca, Maria F. [2 ]
Navarrete, Roberto [1 ]
Navarrete, Cristina [2 ]
Jen, Ling-Sun [1 ]
机构
[1] Imperial Coll, Dept Cellular & Mol Neurosci, London W6 8RP, England
[2] Natl Hlth Serv Blood & Transplant, Colindale Ctr, London, England
关键词
mesenchymal stem cells; neuronal differentiation; electrophysiology;
D O I
10.1002/jnr.21649
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We investigated the neurogenic potential of full-term human umbilical cord blood (hUCB)-derived multipotent mesenchymal stem cells (MSCs) in response to neural induction media or coculture with rat neural cells. Phenotypic and functional changes were assessed by immunocytochemistry, RT-PCR, and whole-cell patch-clamp recordings. Naive MSCs expressed both mesodermal and ectodermal markers prior to neural induction. Exposure to retinoic acid, basic fibroblast growth factor, or cyclic adenosine monophosphate (cAMP) did not stimulate neural morphology, whereas exposure to dibutyryl cAMP and 3-isobutyl-1-methylxanthine stimulated a neuron-like morphology but also appeared to be cytotoxic. All protocols stimulated increases in expression of the neural precursor marker nestin, but expression of mature neuronal or glial markers MAP2 and GFAP was not observed. Nestin expression increases were serum level dependent. Electrophysiological properties of MSCs were studied with whole-cell patch-clamp recordings. The MSCs possessed no ionic currents typical of neurons before or after neural induction protocols. Coculture of hUCB-derived MSCs and rat neural cells induced some MSCs to adopt an astrocyte-like morphology and express GFAP protein and mRNA. Our data suggest hUCB-derived MSCs do not transdifferentiate into mature functioning neurons in response to the above neurogenic protocols; however, coculture with rat neural cells led to a minority adopting an astrocyte-like phenotype. (C) 2008 Wiley-Liss, Inc.
引用
收藏
页码:1902 / 1915
页数:14
相关论文
共 53 条
[1]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[2]   REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis [J].
Ballas, N ;
Grunseich, C ;
Lu, DD ;
Speh, JC ;
Mandel, G .
CELL, 2005, 121 (04) :645-657
[3]   Mesenchymal stem cells: clinical applications and biological characterization [J].
Barry, FP ;
Murphy, JM .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2004, 36 (04) :568-584
[4]   Immunogenicity of adult mesenchymal stem cells: Lessons from the fetal allograft [J].
Barry, FP ;
Murphy, JM ;
English, K ;
Mahon, BP .
STEM CELLS AND DEVELOPMENT, 2005, 14 (03) :252-265
[5]   Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model [J].
Björklund, LM ;
Sánchez-Pernaute, R ;
Chung, SM ;
Andersson, T ;
Chen, IYC ;
McNaught, KS ;
Brownell, AL ;
Jenkins, BG ;
Wahlestedt, C ;
Kim, KS ;
Isacson, O .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (04) :2344-2349
[6]   Neuro-glial differentiation of human bone marrow stem cells in vitro [J].
Bossolasco, P ;
Cova, L ;
Calzarossa, C ;
Rimoldi, SG ;
Borsotti, C ;
Deliliers, GL ;
Silani, V ;
Soligo, D ;
Polli, E .
EXPERIMENTAL NEUROLOGY, 2005, 193 (02) :312-325
[7]   Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells [J].
Bruder, SP ;
Kurth, AA ;
Shea, M ;
Hayes, WC ;
Jaiswal, N ;
Kadiyala, S .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1998, 16 (02) :155-162
[8]   Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1α [J].
Cho, KJ ;
Trzaska, KA ;
Greco, SJ ;
McArdle, J ;
Wang, FS ;
Ye, JH ;
Rameshwar, P .
STEM CELLS, 2005, 23 (03) :383-391
[9]   Analysis of neuron-like differentiation of human bone marrow mesenchymal stem cells [J].
Choi, Chi Bong ;
Cho, Yun Kyoung ;
Prakash, K. V. Bhanu ;
Jee, Bo Keun ;
Han, Chang Whan ;
Paik, Young-Ki ;
Kim, Hwi-Yool ;
Lee, Kweon-Haeng ;
Chung, Namhyun ;
Rha, Hyoung Kyun .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 350 (01) :138-146
[10]   Characterization and intraspinal grafting of EGF/bFGF-dependent neurospheres derived from embryonic rat spinal cord [J].
Chow, SY ;
Moul, J ;
Tobias, CA ;
Himes, BT ;
Liu, Y ;
Obrocka, M ;
Hodge, L ;
Tessler, A ;
Fischer, I .
BRAIN RESEARCH, 2000, 874 (02) :87-106