Invariants of symplectic and orthogonal groups acting on GL(n, C)-modules

被引:0
作者
Drensky, Vesselin [1 ]
Hristova, Elitza [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, Sofia, Bulgaria
关键词
Invariant theory; Hilbert series; Schur function; LIE-GROUPS; REPRESENTATIONS; RULES;
D O I
10.3906/mat-2201-37
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let GL(n) = GL(n, C) denote the complex general linear group and let G subset of GL(n) be one of the classical complex subgroups O(n) , SO(n) , and Sp(2k) (in the case n = 2k). We take a finite dimensional polynomial GL(n) - module W and consider the symmetric algebra S(W). Extending previous results for G = SL(n) , we develop a method for determining the Hilbert series H(S(W)(G),t) of the algebra of invariants S(W)(G). Our method is based on simple algebraic computations and can be easily realized using popular software packages. Then we give many explicit examples for computing H(S(W)(G),t). As an application, we consider the question of regularity of the algebra S (w)(O(n)). For n = 2 and n = 3 we give a complete list of modules W , so that if S(W)(O(n)) is regular then W is in this list. As a further application, we extend our method to compute also the Hilbert series of the algebras of invariants Lambda((SV)-V-2)(G) and Lambda(Lambda V-2)(G), where V = C-n denotes the standard GL(n) -module.
引用
收藏
页数:35
相关论文
共 16 条
[1]  
[Anonymous], 2015, Oxford Classic Texts in the Physical Sciences
[2]  
Benanti F., 2012, SERDICA MATH J, V38, P137
[3]   Applications of Belov's theorem to the cocharacter sequence of p.i. algebras [J].
Berele, A .
JOURNAL OF ALGEBRA, 2006, 298 (01) :208-214
[4]  
DERKSEN H., 2002, ENC MAT SCI, V130
[5]   Multiplicities of Schur functions in invariants of two 3 x 3 matrices [J].
Drensky, V ;
Genoy, GK .
JOURNAL OF ALGEBRA, 2003, 264 (02) :496-519
[6]  
Elliott EB, 1903, Q J PURE APPL MATH, V34, P348
[7]  
Goodman R, 2009, GRAD TEXTS MATH, V255, P1, DOI 10.1007/978-0-387-79852-3_1
[8]  
Harris W., 1991, Representation Theory: A First Course
[9]   Stable branching rules for classical symmetric pairs [J].
Howe, R ;
Tan, EC ;
Willenbring, JF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (04) :1601-1626
[10]   Invariant theory in exterior algebras and Amitsur-Levitzki type theorems [J].
Itoh, Minoru .
ADVANCES IN MATHEMATICS, 2016, 288 :679-701