Planar Kolmogorov Systems with Infinitely Many Singular Points at Infinity
被引:0
作者:
Diz-Pita, Erika
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Santiago De Compostela 15705, SpainUniv Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Santiago De Compostela 15705, Spain
Diz-Pita, Erika
[1
]
Llibre, Jaume
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, SpainUniv Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Santiago De Compostela 15705, Spain
Llibre, Jaume
[2
]
Victoria Otero-Espinar, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Santiago De Compostela 15705, SpainUniv Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Santiago De Compostela 15705, Spain
Victoria Otero-Espinar, M.
[1
]
机构:
[1] Univ Santiago de Compostela, Dept Estat Anal Matemat & Optimizac, Santiago De Compostela 15705, Spain
[2] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Spain
来源:
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
|
2022年
/
32卷
/
05期
We classify the global dynamics of the five-parameter family of planar Kolmogorov systems (y)over dot = y(b(0) + b(1yz) + b(2y) + b(3z)), (z)over dot = z(c(0) + b(1yz) + b(2y) + b(3z)), which is obtained from the Lotka-Volterra systems of dimension three. These systems have infinitely many singular points at inifnity. We give the topological classification of their phase portraits in the Poincare disc, so we can describe the dynamics of these systems near infinity. We prove that these systems have 13 topologically distinct global phase portraits.