Marginally trapped surfaces and AdS/CFT

被引:5
作者
Grado-White, Brianna [1 ]
Marolf, Donald [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
AdS-CFT Correspondence; Classical Theories of Gravity; Gauge-gravity correspondence;
D O I
10.1007/JHEP02(2018)049
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
It has been proposed that the areas of marginally trapped or anti-trapped surfaces (also known as leaves of holographic screens) may encode some notion of entropy. To connect this to AdS/CFT, we study the case of marginally trapped surfaces anchored to an AdS boundary. We establish that such boundary-anchored leaves lie between the causal and extremal surfaces de fined by the anchor and that they have area bounded below by that of the minimal extremal surface. This suggests that the area of any leaf represents a coarse-grained von Neumann entropy for the associated region of the dual CFT. We further demonstrate that the leading area-divergence of a boundary-anchored marginally trapped surface agrees with that for the associated extremal surface, though subleading divergences generally differ. Finally, we generalize an argument of Bousso and Engelhardt to show that holographic screens with all leaves anchored to the same boundary set have leaf-areas that increase monotonically along the screen, and we describe a construction through which this monotonicity can take the more standard form of requiring entropy to increase with boundary time. This construction is related to what one might call future causal holographic information, which in such cases also provides an upper bound on the area of the associated leaves.
引用
收藏
页数:23
相关论文
共 26 条
[1]  
[Anonymous], ARXIV170602038
[2]   Dynamical horizons and their properties [J].
Ashtekar, A ;
Krishnan, B .
PHYSICAL REVIEW D, 2003, 68 (10)
[3]   GENERALIZED SECOND LAW OF THERMODYNAMICS IN BLACK-HOLE PHYSICS [J].
BEKENSTE.JD .
PHYSICAL REVIEW D, 1974, 9 (12) :3292-3300
[4]   A covariant entropy conjecture [J].
Bousso, R .
JOURNAL OF HIGH ENERGY PHYSICS, 1999, (07) :XIV-33
[5]  
Bousso R, 1999, J HIGH ENERGY PHYS
[6]   New Area Law in General Relativity [J].
Bousso, Raphael ;
Engelhardt, Netta .
PHYSICAL REVIEW LETTERS, 2015, 115 (08)
[7]   Proof of a new area law in general relativity [J].
Bousso, Raphael ;
Engelhardt, Netta .
PHYSICAL REVIEW D, 2015, 92 (04)
[8]   A coarse-grained generalized second law for holographic conformal field theories [J].
Bunting, William ;
Fu, Zicao ;
Marolf, Donald .
CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (05)
[9]   Entropy, extremality, euclidean variations, and the equations of motion [J].
Dong, Xi ;
Lewkowycz, Aitor .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (01)
[10]   No simple dual to the causal holographic information? [J].
Engelhardt, Netta ;
Wall, Aron C. .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04)