Nano-engineering induced Bi dots in situ anchored into modified porous carbon with superior sodium ion storage

被引:11
作者
Chen, Jun [1 ]
Xiao, Jun [1 ,2 ]
Li, Jiayi [1 ]
Gao, Hong [1 ,2 ]
Guo, Xin [2 ]
Liu, Hao [1 ,2 ]
Wang, Guoxiu [2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Joint Int Lab Environm & Energy Frontier Mat, Shanghai 200444, Peoples R China
[2] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sydney, NSW 2007, Australia
基金
澳大利亚研究理事会;
关键词
HIGH-PERFORMANCE ANODE; HIGH-CAPACITY; BISMUTH; FILM; NANOCOMPOSITE; BATTERIES; HYBRID; OXIDE; SB;
D O I
10.1039/d2ta06256a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bismuth-based materials have aroused extensive interest in energy storage systems owing to their high volumetric capacity, relatively low reaction potential, and minimum volume changes compared with their alloy counterparts. However, the cumbersome synthetic routes and low initial coulombic efficiency (ICE) are the main issues that still need to be resolved. Herein, Bi dots in situ embedded in a KOH modified carbon matrix (Bi@MC) have been successfully fabricated via a facile annealing process. The KOH modification endows the carbon matrix with a strong absorption ability, which can further suppress the agglomeration of Bi and lead to uniformly distributed Bi dots (3-18 nm). For the half-cell test, a high ICE (88.13%), record ultra-stable cycle life (100% capacity retention over 10 000 cycles at 2.5 A g(-1)) and a superior rate performance (345 mA h g(-1) at 50 A g(-1)) can be realized. Furthermore, the Na3V2(PO4)(3)|Bi@MC full cell delivers an excellent energy density of up to 195 W h kg(-1) and behaves with no capacity decay over 600 cycles.
引用
收藏
页码:20635 / 20645
页数:11
相关论文
共 60 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[3]   N-Doped carbon encapsulating Bi nanoparticles derived from metal-organic frameworks for high-performance sodium-ion batteries [J].
Chen, Lin ;
He, Xiaojie ;
Chen, Huimin ;
Huang, Shuping ;
Wei, Mingdeng .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (38) :22048-22055
[4]   Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH [J].
Chen, Wei ;
Gong, Meng ;
Li, Kaixu ;
Xia, Mingwei ;
Chen, Zhiqun ;
Xiao, Haoyu ;
Fang, Yang ;
Chen, Yingquan ;
Yang, Haiping ;
Chen, Hanping .
APPLIED ENERGY, 2020, 278
[5]   An Overall Understanding of Sodium Storage Behaviors in Hard Carbons by an "Adsorption-Intercalation/Filling" Hybrid Mechanism [J].
Chen, Xiaoyang ;
Tian, Jiyu ;
Li, Peng ;
Fang, Youlong ;
Fang, Yongjin ;
Liang, Xinmiao ;
Feng, Jiwen ;
Dong, Jiao ;
Ai, Xinping ;
Yang, Hanxi ;
Cao, Yuliang .
ADVANCED ENERGY MATERIALS, 2022, 12 (24)
[6]   Synthesis of carbon coated Bi2O3 nanocomposite anode for sodium-ion batteries [J].
Fang, Wei ;
Fan, Lishuang ;
Zhang, Yu ;
Zhang, Qi ;
Yin, Yanyou ;
Zhang, Naiqing ;
Sun, Kening .
CERAMICS INTERNATIONAL, 2017, 43 (12) :8819-8823
[7]   Rationally Designed Three-Layered Cu2S@Carbon@MoS2 Hierarchical Nanoboxes for Efficient Sodium Storage [J].
Fang Yongjin ;
Luan Deyan ;
Chen Ye ;
Gao Shuyan ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (18) :7178-7183
[8]   Bullet-like Cu9S5 Hollow Particles Coated with Nitrogen-Doped Carbon for Sodium-Ion Batteries [J].
Fang, Yongjin ;
Yu, Xin-Yao ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (23) :7744-7748
[9]   Formation of Polypyrrole-Coated Sb2Se3 Microclips with Enhanced Sodium-Storage Properties [J].
Fang, Yongjin ;
Yu, Xin-Yao ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (31) :9859-9863
[10]   A Dealloying Synthetic Strategy for Nanoporous Bismuth-Antimony Anodes for Sodium Ion Batteries [J].
Gao, Hui ;
Niu, Jiazheng ;
Zhang, Chi ;
Peng, Zhangquan ;
Zhang, Zhonghua .
ACS NANO, 2018, 12 (04) :3568-3577