Non-differentiable embedding of Lagrangian systems and partial differential equations

被引:9
|
作者
Cresson, Jacky [1 ,2 ]
Greff, Isabelle [1 ,3 ]
机构
[1] Univ Pau & Pays Adour, Lab Math Appl Pau, F-64013 Pau, France
[2] Observ Paris, Inst Mecan Celeste & Calcul Ephemerides, F-75014 Paris, France
[3] Max Planck Inst Math Nat Wissensch Leipzig, D-04103 Leipzig, Germany
关键词
Non-differentiable calculus of variations; Lagrangian systems; Navier-Stokes equation; Schrodinger equation; SCALE-RELATIVITY;
D O I
10.1016/j.jmaa.2011.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the non-differentiable embedding theory of differential operators and Lagrangian systems using a new operator on non-differentiable functions. We then construct the corresponding calculus of variations and we derive the associated non-differentiable Euler-Lagrange equation, and apply this formalism to the study of PDEs. First, we extend the characteristics method to the non-differentiable case. We prove that non-differentiable characteristics for the Navier-Stokes equation correspond to extremals of an explicit non-differentiable Lagrangian system. Second, we prove that the solutions of the Schrodinger equation are non-differentiable extremals of the Newton's Lagrangian. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:626 / 646
页数:21
相关论文
共 50 条