Quantum Isometries of the Finite Noncommutative Geometry of the Standard Model

被引:18
作者
Bhowmick, Jyotishman [1 ]
D'Andrea, Francesco [2 ]
Dabrowski, Ludwik [2 ]
机构
[1] Abdus Salam Int Ctr Theoret Phys ICTP, I-34151 Trieste, Italy
[2] SISSA, I-34136 Trieste, Italy
关键词
AUTOMORPHISM-GROUPS; DIRAC OPERATOR; SYMMETRY;
D O I
10.1007/s00220-011-1301-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the quantum isometry group of the finite noncommutative geometry F describing the internal degrees of freedom in the Standard Model of particle physics. We show that this provides genuine quantum symmetries of the spectral triple corresponding to M x F, where M is a compact spin manifold. We also prove that the bosonic and fermionic part of the spectral action are preserved by these symmetries.
引用
收藏
页码:101 / 131
页数:31
相关论文
共 41 条
[1]   Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory -: art. no. 011301 [J].
Ahmad, QR ;
Allen, RC ;
Andersen, TC ;
Anglin, JD ;
Barton, JC ;
Beier, EW ;
Bercovitch, M ;
Bigu, J ;
Biller, SD ;
Black, RA ;
Blevis, I ;
Boardman, RJ ;
Boger, J ;
Bonvin, E ;
Boulay, MG ;
Bowler, MG ;
Bowles, TJ ;
Brice, SJ ;
Browne, MC ;
Bullard, TV ;
Bühler, G ;
Cameron, J ;
Chan, YD ;
Chen, HH ;
Chen, M ;
Chen, X ;
Cleveland, BT ;
Clifford, ETH ;
Cowan, JHM ;
Cowen, DF ;
Cox, GA ;
Dai, X ;
Dalnoki-Veress, F ;
Davidson, WF ;
Doe, PJ ;
Doucas, G ;
Dragowsky, MR ;
Duba, CA ;
Duncan, FA ;
Dunford, M ;
Dunmore, JA ;
Earle, ED ;
Elliott, SR ;
Evans, HC ;
Ewan, GT ;
Farine, J ;
Fergani, H ;
Ferraris, AP ;
Ford, RJ ;
Formaggio, JA .
PHYSICAL REVIEW LETTERS, 2002, 89 (01)
[2]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[3]  
[Anonymous], 1998, Nieuw Arch. Wisk
[4]   Quantum automorphism groups of homogeneous graphs [J].
Banica, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 224 (02) :243-280
[5]   Quantum automorphism groups of small metric spaces [J].
Banica, T .
PACIFIC JOURNAL OF MATHEMATICS, 2005, 219 (01) :27-51
[6]  
Banica T, 1997, COMMUN MATH PHYS, V190, P143, DOI 10.1007/s002200050237
[7]   INVARIANTS OF THE HALF-LIBERATED ORTHOGONAL GROUP [J].
Banica, Teodor ;
Vergnioux, Roland .
ANNALES DE L INSTITUT FOURIER, 2010, 60 (06) :2137-2164
[8]   QUANTUM ISOMETRY GROUPS OF 0 DIMENSIONAL MANIFOLDS [J].
Bhowmick, Jyotishman ;
Goswami, Debashish ;
Skalski, Adam .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (02) :901-921
[9]   Some Counterexamples in the Theory of Quantum Isometry Groups [J].
Bhowmick, Jyotishman ;
Goswami, Debashish .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 93 (03) :279-293
[10]   Quantum isometry groups of noncommutative manifolds associated to group C*-algebras [J].
Bhowmick, Jyotishman ;
Skalski, Adam .
JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (10) :1474-1489