Far-field super-resolution ghost imaging with a deep neural network constraint

被引:188
作者
Wang, Fei [1 ,2 ]
Wang, Chenglong [1 ,2 ]
Chen, Mingliang [1 ,2 ]
Gong, Wenlin [1 ,2 ]
Zhang, Yu [1 ]
Han, Shensheng [1 ,2 ,3 ,4 ]
Situ, Guohai [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
[4] CAS Ctr Excellence Ultraintense Laser Sci, Shanghai 201800, Peoples R China
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1038/s41377-021-00680-w
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ghost imaging (GI) facilitates image acquisition under low-light conditions by single-pixel measurements and thus has great potential in applications in various fields ranging from biomedical imaging to remote sensing. However, GI usually requires a large amount of single-pixel samplings in order to reconstruct a high-resolution image, imposing a practical limit for its applications. Here we propose a far-field super-resolution GI technique that incorporates the physical model for GI image formation into a deep neural network. The resulting hybrid neural network does not need to pre-train on any dataset, and allows the reconstruction of a far-field image with the resolution beyond the diffraction limit. Furthermore, the physical model imposes a constraint to the network output, making it effectively interpretable. We experimentally demonstrate the proposed GI technique by imaging a flying drone, and show that it outperforms some other widespread GI techniques in terms of both spatial resolution and sampling ratio. We believe that this study provides a new framework for GI, and paves a way for its practical applications.
引用
收藏
页数:11
相关论文
共 54 条
[11]   Regularization by Architecture: A Deep Prior Approach for Inverse Problems [J].
Dittmer, Soren ;
Kluth, Tobias ;
Maass, Peter ;
Baguer, Daniel Otero .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2020, 62 (03) :456-470
[12]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[13]   Single-pixel imaging via compressive sampling [J].
Duarte, Marco F. ;
Davenport, Mark A. ;
Takhar, Dharmpal ;
Laska, Jason N. ;
Sun, Ting ;
Kelly, Kevin F. ;
Baraniuk, Richard G. .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (02) :83-91
[14]   Principles and prospects for single-pixel imaging [J].
Edgar, Matthew P. ;
Gibson, Graham M. ;
Padgett, Miles J. .
NATURE PHOTONICS, 2019, 13 (01) :13-20
[15]  
Eldar Y. C., 2012, Compressed Sensing: Theory and Applications
[16]   Ghost imaging: from quantum to classical to computational [J].
Erkmen, Baris I. ;
Shapiro, Jeffrey H. .
ADVANCES IN OPTICS AND PHOTONICS, 2010, 2 (04) :405-450
[17]   High-resolution ghost image and ghost diffraction experiments with thermal light [J].
Ferri, F ;
Magatti, D ;
Gatti, A ;
Bache, M ;
Brambilla, E ;
Lugiato, LA .
PHYSICAL REVIEW LETTERS, 2005, 94 (18)
[18]   Differential Ghost Imaging [J].
Ferri, F. ;
Magatti, D. ;
Lugiato, L. A. ;
Gatti, A. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[19]   Ghost imaging with thermal light: Comparing entanglement and classical correlation [J].
Gatti, A ;
Brambilla, E ;
Bache, M ;
Lugiato, LA .
PHYSICAL REVIEW LETTERS, 2004, 93 (09) :093602-1
[20]   Single-pixel imaging 12 years on: a review [J].
Gibson, Graham M. ;
Johnson, Steven D. ;
Padgett, Miles J. .
OPTICS EXPRESS, 2020, 28 (19) :28190-28208