Fast algorithms for frequent itemset mining using FP-trees

被引:337
|
作者
Grahne, G [1 ]
Zhu, JF [1 ]
机构
[1] Concordia Univ, Dept Comp Sci, Montreal, PQ H3G 1M8, Canada
关键词
data mining; association rules;
D O I
10.1109/TKDE.2005.166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Efficient algorithms for mining frequent itemsets are crucial for mining association rules as well as for many other data mining tasks. Methods for mining frequent itemsets have been implemented using a prefix-tree structure, known as an FP-tree, for storing compressed information about frequent itemsets. Numerous experimental results have demonstrated that these algorithms perform extremely well. In this paper, we present a novel FP-array technique that greatly reduces the need to traverse FP-trees, thus obtaining significantly improved performance for FP-tree-based algorithms. Our technique works especially well for sparse data sets. Furthermore, we present new algorithms for mining all, maximal, and closed frequent itemsets. Our algorithms use the FP-tree data structure in combination with the FP-array technique efficiently and incorporate various optimization techniques. We also present experimental results comparing our methods with existing algorithms. The results show that our methods are the fastest for many cases. Even though the algorithms consume much memory when the data sets are sparse, they are still the fastest ones when the minimum support is low. Moreover, they are always among the fastest algorithms and consume less memory than other methods when the data sets are dense.
引用
收藏
页码:1347 / 1362
页数:16
相关论文
共 50 条
  • [41] Parallelization of Frequent Itemset Mining Methods with FP-tree: An Experiment with PrePost+ Algorithm
    Jamsheela, Olakara
    Gopalakrishna, Raju
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2021, 18 (02) : 208 - 213
  • [42] New Spark solutions for distributed frequent itemset and association rule mining algorithms
    Fernandez-Basso, Carlos
    Ruiz, M. Dolores
    Martin-Bautista, Maria J.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (02): : 1217 - 1234
  • [43] Paradigm and performance analysis of distributed frequent itemset mining algorithms based on Mapreduce
    Xiao, Wen
    Hu, Juan
    MICROPROCESSORS AND MICROSYSTEMS, 2021, 82
  • [44] Research on the four kinds of frequent itemset mining algorithms in market basket analysis
    Feng, L
    Chen, HS
    CONCURRENT ENGINEERING: THE WORLDWIDE ENGINEERING GRID, PROCEEDINGS, 2004, : 329 - 332
  • [45] New Spark solutions for distributed frequent itemset and association rule mining algorithms
    Carlos Fernandez-Basso
    M. Dolores Ruiz
    Maria J. Martin-Bautista
    Cluster Computing, 2024, 27 : 1217 - 1234
  • [46] A Survey Paper on Frequent Itemset Mining
    Sastry, J. S. V. R. S.
    Suresh, V
    INTERNATIONAL CONFERENCE ON COMPUTER VISION AND MACHINE LEARNING, 2019, 1228
  • [47] Frequent Itemset Mining in Multirelational Databases
    Jimenez, Aida
    Berzal, Fernando
    Cubero, Juan-Carlos
    FOUNDATIONS OF INTELLIGENT SYSTEMS, PROCEEDINGS, 2009, 5722 : 15 - 24
  • [48] Verified Programs for Frequent Itemset Mining
    Loulergue, Frederic
    Whitney, Christopher D.
    2018 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI), 2018, : 1516 - 1523
  • [49] A primer to frequent itemset mining for bioinformatics
    Naulaerts, Stefan
    Meysman, Pieter
    Bittremieux, Wout
    Trung Nghia Vu
    Vanden Berghe, Wim
    Goethals, Bart
    Laukens, Kris
    BRIEFINGS IN BIOINFORMATICS, 2015, 16 (02) : 216 - 231
  • [50] Oracle and Vertica for Frequent Itemset Mining
    Kyurkchiev, Hristo
    Kaloyanova, Kalinka
    DATA MINING AND BIG DATA, DMBD 2016, 2016, 9714 : 77 - 85