Integral functionals that are continuous with respect to the weak topology on W01,p (0,1)

被引:2
作者
Hencl, S
Kolár, J
Pangrác, O
机构
[1] Charles Univ Prague, Dept Math Anal, Prague 18600 8, Czech Republic
[2] Charles Univ Prague, Dept Appl Math, CR-11800 Prague, Czech Republic
关键词
weak continuity; nonlinear integral functional; Sobolev spaces; linearity;
D O I
10.1016/j.na.2005.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For continuous (or, locally bounded Caratheodory) functions g: [0, 1] x R -> R we prove that the functional Phi(u) = integral(1)(0)g (x, u (x)) dx is weakly continuous on W-0(1,p)(0, 1), 1 <= p < infinity, if and only if g is linear in the second variable. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:81 / 87
页数:7
相关论文
共 3 条
[1]  
Dacorogna B., 1982, WEAK CONTINUITY WEAK, P922
[2]   Three topological problems about integral functionals on Sobolev spaces [J].
Ricceri, B .
JOURNAL OF GLOBAL OPTIMIZATION, 2004, 28 (3-4) :401-404
[3]  
Serrin J., 1961, Trans. Amer. Math. Soc., V101, P139, DOI [10.1090/S0002-9947-1961-0138018-9, DOI 10.1090/S0002-9947-1961-0138018-9]