scRMD: imputation for single cell RNA-seq data via robust matrix decomposition

被引:44
作者
Chen, Chong [1 ,2 ]
Wu, Changjing [1 ]
Wu, Linjie [1 ]
Wang, Xiaochen [1 ]
Deng, Minghua [1 ,3 ,4 ]
Xi, Ruibin [1 ,3 ,5 ]
机构
[1] Peking Univ, Sch Math Sci, Dept Probabil & Stat, Beijing 100871, Peoples R China
[2] Alibaba Grp, Damo Acad, Beijing 100029, Peoples R China
[3] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
[4] Peking Univ, Ctr Quantitat Biol, Beijing 100871, Peoples R China
[5] Peking Univ, Dept Biostat, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
GENE-EXPRESSION;
D O I
10.1093/bioinformatics/btaa139
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Single cell RNA-sequencing (scRNA-seq) technology enables whole transcriptome profiling at single cell resolution and holds great promises in many biological and medical applications. Nevertheless, scRNA-seq often fails to capture expressed genes, leading to the prominent dropout problem. These dropouts cause many problems in down-stream analysis, such as significant increase of noises, power loss in differential expression analysis and obscuring of gene-to-gene or cell-to-cell relationship. Imputation of these dropout values can be beneficial in scRNA-seq data analysis. Results: In this article, we model the dropout imputation problem as robust matrix decomposition. This model has minimal assumptions and allows us to develop a computational efficient imputation method called scRMD. Extensive data analysis shows that scRMD can accurately recover the dropout values and help to improve downstream analysis such as differential expression analysis and clustering analysis.
引用
收藏
页码:3156 / 3161
页数:6
相关论文
共 40 条
[1]   Cell fixation and preservation for droplet-based single-cell transcriptomics [J].
Alles, Jonathan ;
Karaiskos, Nikos ;
Praktiknjo, Samantha D. ;
Grosswendt, Stefanie ;
Wahle, Philipp ;
Ruffault, Pierre-Louis ;
Ayoub, Salah ;
Schreyer, Luisa ;
Boltengagen, Anastasiya ;
Birchmeier, Carmen ;
Zinzen, Robert ;
Kocks, Christine ;
Rajewsky, Nikolaus .
BMC BIOLOGY, 2017, 15
[2]  
Andrews Tallulah S, 2018, F1000Res, V7, P1740, DOI 10.12688/f1000research.16613.1
[3]   SCnorm: robust normalization of single-cell RNA-seq data [J].
Bacher, Rhonda ;
Chu, Li-Fang ;
Leng, Ning ;
Gasch, Audrey P. ;
Thomson, James A. ;
Stewart, Ron M. ;
Newton, Michael ;
Kendziorski, Christina .
NATURE METHODS, 2017, 14 (06) :584-+
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm [J].
Chu, Li-Fang ;
Leng, Ning ;
Zhang, Jue ;
Hou, Zhonggang ;
Mamott, Daniel ;
Vereide, David T. ;
Choi, Jeea ;
Kendziorski, Christina ;
Stewart, Ron ;
Thomson, James A. .
GENOME BIOLOGY, 2016, 17
[6]   Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells [J].
Deng, Qiaolin ;
Ramskold, Daniel ;
Reinius, Bjorn ;
Sandberg, Rickard .
SCIENCE, 2014, 343 (6167) :193-196
[7]   CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification [J].
Hashimshony, Tamar ;
Wagner, Florian ;
Sher, Noa ;
Yanai, Itai .
CELL REPORTS, 2012, 2 (03) :666-673
[8]   Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex [J].
Hrvatin, Sinisa ;
Hochbaum, Daniel R. ;
Nagy, M. Aurel ;
Cicconet, Marcelo ;
Robertson, Keiramarie ;
Cheadle, Lucas ;
Zilionis, Rapolas ;
Ratner, Alex ;
Borges-Monroy, Rebeca ;
Klein, Allon M. ;
Sabatini, Bernardo L. ;
Greenberg, Michael E. .
NATURE NEUROSCIENCE, 2018, 21 (01) :120-+
[9]   Robust Matrix Decomposition With Sparse Corruptions [J].
Hsu, Daniel ;
Kakade, Sham M. ;
Zhang, Tong .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (11) :7221-7234
[10]   COMPARING PARTITIONS [J].
HUBERT, L ;
ARABIE, P .
JOURNAL OF CLASSIFICATION, 1985, 2 (2-3) :193-218