Structural study of AsS2-Ag glasses over a wide concentration range

被引:15
作者
Kaban, I. [1 ]
Jovari, P. [2 ]
Wagner, T. [3 ,4 ]
Bartos, M. [3 ]
Frumar, M. [3 ]
Beuneu, B. [5 ]
Hoyer, W. [6 ]
Mattern, N. [1 ]
Eckert, J. [1 ,7 ]
机构
[1] IFW Dresden, Inst Complex Mat, D-01171 Dresden, Germany
[2] Res Inst Solid State Phys & Opt, H-1525 Budapest, Hungary
[3] Univ Pardubice, Fac Chem Technol, Pardubice 53210, Czech Republic
[4] Univ Pardubice, Ctr Mat Sci, Pardubice 53002, Czech Republic
[5] CEA Saclay, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France
[6] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
[7] Tech Univ Dresden, Inst Mat Sci, D-01062 Dresden, Germany
关键词
Chalcogenides; glasses; phase separation; structure; density; AG-AS-S; CHALCOGENIDE THIN-FILMS; 575 DEGREES C; NEUTRON-DIFFRACTION; AG2S-AS2S3; GLASSES; PHASE RELATIONS; AGASS2; SILVER; RMC++; ORDER;
D O I
10.1016/j.jnoncrysol.2011.06.015
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
(As0.33S0.67)(100-x)Ag-x (0 <= x <= 28) bulk glasses showing micro-phase separation in a wide concentration range have been studied by X-ray diffraction, neutron diffraction and extended X-ray absorption fine structure measurements. The AsAgS2 composition, which forms a homogeneous glass, is modeled with the reverse Monte-Carlo simulation technique. It is established that Ag prefers the environment of S; Ag-As bonding cannot be observed. Similarly to the AsAgS2 crystalline modifications smithite and trechmannite, the main structural units of the glass are AsS3 pyramids. The covalent network of As and S atoms becomes fragmented in the glassy AsAgS2 unlike in the glassy AsS2. The environment of Ag atoms in the AsAgS2 glass differs from that in the crystalline state. In average, each Ag atom has four nearest neighbors, three of them being S and one being Ag. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3430 / 3434
页数:5
相关论文
共 35 条
[1]   Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure [J].
Ankudinov, AL ;
Ravel, B ;
Rehr, JJ ;
Conradson, SD .
PHYSICAL REVIEW B, 1998, 58 (12) :7565-7576
[2]  
Borisova Z.U., 1981, GLASSY SEMICONDUCTOR
[3]   Superionic and ion-conducting chalcogenide glasses: Transport regimes and structural features [J].
Bychkov, E. .
SOLID STATE IONICS, 2009, 180 (6-8) :510-516
[4]   Neutron diffraction studies of Ag2S-As2S3 glasses in the percolation and modifier-controlled domains [J].
Bychkov, E ;
Price, DL .
SOLID STATE IONICS, 2000, 136 :1041-1048
[5]   Reverse Monte Carlo modelling of the structure of disordered materials with RMC++: a new implementation of the algorithm in C++ [J].
Evrard, G ;
Pusztai, L .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (05) :S1-S13
[6]  
Gereben O, 2007, J OPTOELECTRON ADV M, V9, P3021
[7]  
GOLOVACH II, 1976, RUSS PHYS J, V19, P294
[8]   DIE STRUKTUR DES SMITHITS AGASS2 [J].
HELLNER, E ;
BURZLAFF, H .
NATURWISSENSCHAFTEN, 1964, 51 (02) :35-&
[9]   POLARITY-DEPENDENT MEMORY SWITCHING AND BEHAVIOR OF AG DENDRITE IN AG-PHOTODOPED AMORPHOUS AS2S3 FILMS [J].
HIROSE, Y ;
HIROSE, H .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (06) :2767-2772
[10]   Pulsed neutron diffraction study of the short range structure in amorphous arsenic chalcogenides [J].
Iwadate, Y ;
Hattori, T ;
Nishiyama, S ;
Fukushima, K ;
Mochizuki, Y ;
Misawa, M ;
Fukunaga, T .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1999, 60 (8-9) :1447-1451