Broadband-laser-diode pumped periodically poled potassium titanyl phosphate-Sagnac polarization-entangled photon source

被引:8
作者
Cai, Neng [1 ]
Cai, Wu-Hao [1 ]
Wang, Shun [1 ]
Li, Fang [1 ]
Shimizu, Ryosuke [2 ]
Jin, Rui-Bo [1 ,3 ]
机构
[1] Wuhan Inst Technol, Hubei Key Lab Opt Informat & Pattern Recognit, Wuhan 430205, Peoples R China
[2] Univ Electrocommun, 1-5-1 Chofugaoka, Chofu, Tokyo, Japan
[3] Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
PAIR GENERATION; DOWN-CONVERSION;
D O I
10.1364/JOSAB.437808
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We experimentally demonstrate a polarization-entangled photon source at 810 nm using a type-II phase-matched periodically poled potassium titanyl phosphate (PPKTP) crystal pumped by a low-cost, broadband laser diode with a central wavelength of 405 nm and a typical bandwidth of 0.53 nm. The PPKTP crystal is placed in a Sagnac loop to realize the compact size and high stability. The downconverted biphotons, the signal and the idler, have typical bandwidths of 5.57 and 7.32 nm. We prepare two Bell states vertical bar Psi(+)> and vertical bar Psi(-)> with the fidelities of 0.948 +/- 0.004 and 0.963 +/- 0.002. In the polarization correlation measurement, the visibilities are all higher than 96.2%, and in the Bell inequality test, the S value can achieve 2.78 +/- 0.01. This high-quality and low-cost entangled photon source may have many practical applications in quantum information processing. (C) 2021 Optical Society of America
引用
收藏
页码:77 / 82
页数:6
相关论文
共 41 条
[1]   Entangled photon-pair sources based on three-wave mixing in bulk crystals [J].
Anwar, Ali ;
Perumangatt, Chithrabhanu ;
Steinlechner, Fabian ;
Jennewein, Thomas ;
Ling, Alexander .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (04)
[2]   Robust quantum communication using a polarization-entangled photon pair [J].
Boileau, JC ;
Laflamme, R ;
Laforest, M ;
Myers, CR .
PHYSICAL REVIEW LETTERS, 2004, 93 (22)
[3]   Resource-efficient linear optical quantum computation [J].
Browne, DE ;
Rudolph, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[4]   Polarization Entanglement by Time-Reversed Hong-Ou-Mandel Interference [J].
Chen, Yuanyuan ;
Ecker, Sebastian ;
Wengerowsky, Soeren ;
Bulla, Lukas ;
Joshi, Siddarth Koduru ;
Steinlechner, Fabian ;
Ursin, Rupert .
PHYSICAL REVIEW LETTERS, 2018, 121 (20)
[5]   A wavelength-tunable fiber-coupled source of narrowband entangled photons [J].
Fedrizzi, Alessandro ;
Herbst, Thomas ;
Poppe, Andreas ;
Jennewein, Thomas ;
Zeilinger, Anton .
OPTICS EXPRESS, 2007, 15 (23) :15377-15386
[6]   Spectral information and distinguishability in type-II down-conversion with a broadband pump [J].
Grice, WP ;
Walmsley, IA .
PHYSICAL REVIEW A, 1997, 56 (02) :1627-1634
[7]   Auto-balancing and robust interferometer designs for polarization entangled photon sources [J].
Horn, Rolf ;
Jennewein, Thomas .
OPTICS EXPRESS, 2019, 27 (12) :17369-17376
[8]   Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion [J].
Howell, JC ;
Bennink, RS ;
Bentley, SJ ;
Boyd, RW .
PHYSICAL REVIEW LETTERS, 2004, 92 (21) :210403-1
[9]   Robust, high brightness, degenerate entangled photon source at room temperature [J].
Jabir, M. V. ;
Samanta, G. K. .
SCIENTIFIC REPORTS, 2017, 7
[10]   Bright source of polarization-entangled photons using a PPKTP pumped by a broadband multi-mode diode laser [J].
Jeong, Youn-Chang ;
Hong, Kang-Hee ;
Kim, Yoon-Ho .
OPTICS EXPRESS, 2016, 24 (02) :1165-1174