3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications

被引:1088
作者
Markstedt, Kajsa [1 ,2 ]
Mantas, Athanasios [2 ]
Tournier, Ivan [2 ]
Avila, Hector Martinez [2 ]
Hagg, Daniel [2 ]
Gatenholm, Paul [1 ,2 ]
机构
[1] Chalmers Univ Technol, Wallenberg Wood Sci Ctr, S-41296 Gothenburg, Sweden
[2] Chalmers Univ Technol, Dept Chem & Biol Engn, Biopolymer Technol, S-41296 Gothenburg, Sweden
关键词
BACTERIAL NANOCELLULOSE; HUMAN SKIN; HYDROGELS; CELLULOSE; POLYELECTROLYTE; DIFFERENTIATION; BIOMATERIALS; SCAFFOLDS;
D O I
10.1021/acs.biomac.5b00188
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The introduction of 3D bioprinting is expected to revolutionize the field of tissue engineering and regenerative medicine. The 3D bioprinter is able to dispense materials while moving in X, Y, and Z directions, which enables the,engineering of complex Structures from the bottom up. In this study, a. bioink that combines, the outstanding Shear thinning properties Of nanofibrillated Cellulose (NFC) With the fast cross-linking ability Of alginate was formulated for the 3D bioprinting of living soft tissue with cells. Printability was evaluated with concern: to printer parameters and shape fidelity. The shear thinning behavior of the tested bioinks enabled printing of both 2D gridlike structures as well as 3D constructs. Furthermore, anatomically shaped cartilage structures, such as a human ear and sheep meniscus, were 3D printed using MRI and CT images as blueprints. Human chondrocytes bioprinted in the noncytotoxic, nanocellulose-based bioink exhibited a cell. viability of 73% and 86% after 1 and 7 days of 3D culture, respectively. On the basis of these results, we can conclude that the nanocellulose-based bioink is a suitable hydrogel for 3D bioprinting with living cells. This study demonstrates the potential use of nanocellulose for 3D bioprinting of living tissues and organs.
引用
收藏
页码:1489 / 1496
页数:8
相关论文
共 39 条
[1]   Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants [J].
Ahrem, Hannes ;
Pretzel, David ;
Endres, Michaela ;
Conrad, Daniel ;
Courseau, Julien ;
Mueller, Hartmut ;
Jaeger, Raimund ;
Kaps, Christian ;
Klemm, Dieter O. ;
Kinne, Raimund W. .
ACTA BIOMATERIALIA, 2014, 10 (03) :1341-1353
[2]   Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation [J].
Almeida, Catarina R. ;
Serra, Tiziano ;
Oliveira, Marta I. ;
Planell, Josep A. ;
Barbosa, Mario A. ;
Navarro, Melba .
ACTA BIOMATERIALIA, 2014, 10 (02) :613-622
[3]   Alginate hydrogels as biomaterials [J].
Augst, Alexander D. ;
Kong, Hyun Joon ;
Mooney, David J. .
MACROMOLECULAR BIOSCIENCE, 2006, 6 (08) :623-633
[4]   Mechanical properties of bacterial cellulose and interactions with smooth muscle cells [J].
Bäckdahl, H ;
Helenius, G ;
Bodin, A ;
Nannmark, U ;
Johansson, BR ;
Risberg, B ;
Gatenholm, P .
BIOMATERIALS, 2006, 27 (09) :2141-2149
[5]   Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels [J].
Bertassoni, Luiz E. ;
Cardoso, Juliana C. ;
Manoharan, Vijayan ;
Cristino, Ana L. ;
Bhise, Nupura S. ;
Araujo, Wesleyan A. ;
Zorlutuna, Pinar ;
Vrana, Nihal E. ;
Ghaemmaghami, Amir M. ;
Dokmeci, Mehmet R. ;
Khademhosseini, Ali .
BIOFABRICATION, 2014, 6 (02)
[6]   Direct cell writing of 3D microorgan for in vitro pharmacokinetic model [J].
Chang, Robert ;
Nam, Yae ;
Sun, Wei .
TISSUE ENGINEERING PART C-METHODS, 2008, 14 (02) :157-166
[7]   Bio-ink properties and printability for extrusion printing living cells [J].
Chung, Johnson H. Y. ;
Naficy, Sina ;
Yue, Zhilian ;
Kapsa, Robert ;
Quigley, Anita ;
Moulton, Simon E. ;
Wallace, Gordon G. .
BIOMATERIALS SCIENCE, 2013, 1 (07) :763-773
[8]   Printing and Prototyping of Tissues and Scaffolds [J].
Derby, Brian .
SCIENCE, 2012, 338 (6109) :921-926
[9]   Surface engineering approaches to micropattern surfaces for cell-based assays [J].
Falconnet, D ;
Csucs, G ;
Grandin, HM ;
Textor, M .
BIOMATERIALS, 2006, 27 (16) :3044-3063
[10]   Cellulosic nanofibrils from eucalyptus, acacia and pine fibers [J].
Fall, Andreas B. ;
Burman, Ann ;
Wagberg, Lars .
NORDIC PULP & PAPER RESEARCH JOURNAL, 2014, 29 (01) :176-184