Equivariant elliptic cohomology and rigidity

被引:23
作者
Rosu, I [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
D O I
10.1353/ajm.2001.0027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Equivariant elliptic cohomology with complex coefficients was defined axiomatically by Ginzburg, Kapranov and Vasserot and constructed by Grojnowski. We give an invariant definition of complex S-l-equivariant elliptic cohomology, and use it to give an entirely cohomological proof of the rigidity theorem of Witten for the elliptic-genus. We also state and prove a rigidity theorem for families of elliptic genera.
引用
收藏
页码:647 / 677
页数:31
相关论文
共 23 条
  • [1] Allday C, 1993, Cambridge Studies in Advanced Mathematics, V32
  • [2] [Anonymous], 1992, MANIFOLDS MODULAR FO
  • [3] THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY
    ATIYAH, MF
    BOTT, R
    [J]. TOPOLOGY, 1984, 23 (01) : 1 - 28
  • [4] ATIYAH MF, 1970, ESSAYS TOPOLOGY RELA, P18
  • [5] BOTT R, 1982, DIFFERENTIAL FORMS A
  • [6] Bott R., 1989, J AM MATH SOC, V2, P137, DOI DOI 10.1090/S0894-0347-1989-0954493-5
  • [7] DESAI A, 1996, SOME REMARKS RIGIDIT
  • [8] Dyer E., 1969, COHOMOLOGY THEORIES
  • [9] EDMONDS AL, 1981, P AM MATH SOC, V82, P120, DOI 10.2307/2044329
  • [10] GINZBURG V, IN PRESS ELLIPTIC AL