Remaining useful life prediction based on transfer multi-stage shrinkage attention temporal convolutional network under variable working conditions

被引:38
|
作者
Li, Wanxiang [1 ,2 ]
Shang, Zhiwu [1 ,2 ]
Gao, Maosheng [1 ,2 ]
Qian, Shiqi [1 ,2 ]
Feng, Zehua [1 ,2 ]
机构
[1] Tiangong Univ, Sch Mech Engn, Tianjin 300387, Peoples R China
[2] Tianjin Modern Electromech Equipment Technol Key, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Remaining useful life; Temporal convolutional networks; Transfer learning; Attention mechanism; Shrinkage operation;
D O I
10.1016/j.ress.2022.108722
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Many data-driven remaining useful life (RUL) prediction methods usually assume that the training and test data are independent and identically distributed. However, the different degradation trends of machines under var-iable working conditions can lead to problems with disparate distribution of degradation features and difficulties in obtaining the corresponding labels. To address the above problems, this paper proposed a RUL prediction method based on a transfer multi-stage shrinkage attention temporal convolutional network under variable working conditions. Firstly, a shrinkage attention module is designed by using the attention mechanism and shrinkage operation to eliminate the interference of irrelevant information and increase the focus on critical features. Secondly, a multi-stage shrinkage attention temporal convolution block based on a hybrid attention subnetwork and soft thresholding subnetwork is designed to efficiently learn the manifold structure of the input data to capture the degenerate information-rich deep features. Finally, an unsupervised domain adaptation strategy based on representation subspace distance and bases mismatch penalization is proposed to enhance the learning of cross-domain invariant features. The proposed method is experimentally studied on XJTU-SY and FEMTO datasets. The experimental results demonstrate that the effectiveness and accuracy of the proposed method in RUL prediction are higher than other methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Remaining Useful Life Prediction Based on Adaptive SHRINKAGE Processing and Temporal Convolutional Network
    Wang, Haitao
    Yang, Jie
    Shi, Lichen
    Wang, Ruihua
    SENSORS, 2022, 22 (23)
  • [2] An attention-based multi-scale temporal convolutional network for remaining useful life prediction
    Xu, Zhiqiang
    Zhang, Yujie
    Miao, Qiang
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 250
  • [3] Distributed Attention-Based Temporal Convolutional Network for Remaining Useful Life Prediction
    Song, Yan
    Gao, Shengyao
    Li, Yibin
    Jia, Lei
    Li, Qiqiang
    Pang, Fuzhen
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (12): : 9594 - 9602
  • [4] A novel remaining useful life prediction based on transfer hybrid deep neural network under variable working conditions
    Xia, Yunzhong
    Li, Wanxiang
    Ren, Weijia
    PHYSICA SCRIPTA, 2024, 99 (10)
  • [5] Temporal Convolutional Network with Attention Mechanism for Bearing Remaining Useful Life Prediction
    Wang, Shuai
    Zhang, Chao
    Lv, Da
    Zhao, Wentao
    PROCEEDINGS OF TEPEN 2022, 2023, 129 : 391 - 400
  • [6] A global attention based gated temporal convolutional network for machine remaining useful life prediction
    Xu, Xinyao
    Zhou, Xiaolei
    Fan, Qiang
    Yan, Hao
    Wang, Fangxiao
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 260
  • [7] Temporal convolutional attention network for remaining useful life estimation
    Liu L.
    Pei X.
    Lei X.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2022, 28 (08): : 2375 - 2386
  • [8] Channel attention & temporal attention based temporal convolutional network: A dual attention framework for remaining useful life prediction of the aircraft engines
    Lin, Lin
    Wu, Jinlei
    Fu, Song
    Zhang, Sihao
    Tong, Changsheng
    Zu, Lizheng
    ADVANCED ENGINEERING INFORMATICS, 2024, 60
  • [9] Tool remaining useful life prediction method based on LSTM under variable working conditions
    Jing-Tao Zhou
    Xu Zhao
    Jing Gao
    The International Journal of Advanced Manufacturing Technology, 2019, 104 : 4715 - 4726
  • [10] Tool remaining useful life prediction method based on LSTM under variable working conditions
    Zhou, Jing-Tao
    Zhao, Xu
    Gao, Jing
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 104 (9-12): : 4715 - 4726