Simultaneously suppressing lithium dendrite growth and Mn dissolution by integration of a safe inorganic separator in a LiMn2O4/Li battery

被引:26
|
作者
Rao, Zhixiang [1 ,2 ]
Yang, Ze [2 ,3 ]
Gong, Wenzhe [2 ]
Su, Shang [2 ]
Fu, Qiuyun [1 ]
Huang, Yunhui [2 ]
机构
[1] Huazhong Univ Sci & Technol, Minist Educ, Sch Opt & Elect Informat, Engn Res Ctr Funct Ceram, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
[3] Cent China Normal Univ, Coll Phys Sci & Technol, Inst Nanosci & Nanotechnol, Wuhan 430079, Hubei, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
POSITIVE ELECTRODE MATERIALS; LI-ION; METAL ANODE; CYCLING PERFORMANCE; DEPOSITION; TEMPERATURE; STABILITY; MEMBRANE; SALTS; OXIDE;
D O I
10.1039/c9ta12979k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal is considered an ideal anode material for next-generation rechargeable batteries with high energy density due to its high theoretical capacity and the lowest electrode potential among metals. However, the practical application of Li metal coupled with some traditional cathode materials like spinel LiMn2O4 is hindered by Li dendrites on the anode surface and the dissolution of metal (Mn) ions in the electrolyte. In this work, we introduce a safe inorganic separator based on hydroxyapatite (HAP) nanowires into a LiMn2O4|Li battery. The HAP separator can not only suppress Li dendrite growth, but also help to reduce Mn-ion dissolution, which dramatically improves the cycle stability and safety of the battery. The improved mechanism is carefully investigated. With the integration of the safe inorganic HAP separator, high energy density batteries with Li metal anodes coupled with LiMn2O4 or other cathode materials are promising for practical application.
引用
收藏
页码:3859 / 3864
页数:6
相关论文
共 50 条
  • [1] Conductive MOF-Derived Coating for Suppressing the Mn Dissolution in LiMn2O4 toward Long-Life Lithium-Ion Batteries
    Kim, Eunji
    Lee, Jeongmin
    Park, Junghyun
    Kim, Heejin
    Nam, Kwan Woo
    NANO LETTERS, 2025, 25 (02) : 619 - 627
  • [2] Preparation of LiMn2O4 Nanorods and Nanoparticles for Lithium-ion Battery Applications
    Hariprasad, K.
    Naresh, N.
    Rao, B. Nageswara
    Venkateswarlu, M.
    Satyanarayana, N.
    MATERIALS TODAY-PROCEEDINGS, 2016, 3 (10) : 4040 - 4045
  • [3] Synthesis of Single Crystalline Spinel LiMn2O4 Nanorods for a Lithium Ion Battery
    Zhang Kai
    Wei Yang
    Zong Shuang
    Yu Yan
    Ping Hao
    Li Guiwei
    Jia Jianli
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2014, 9 (09): : 5280 - 5288
  • [4] A Li-ion battery using LiMn2O4 cathode and MnOx/C anode
    Chae, Changju
    Park, Hongyeol
    Kim, Dongwook
    Kim, Jongsik
    Oh, Eun-Suok
    Lee, Jung Kyoo
    JOURNAL OF POWER SOURCES, 2013, 244 : 214 - 221
  • [5] Growth and influence of a porous iron oxide nanolayer on LiMn2O4 in an aqueous rechargeable lithium-ion battery
    Schuppert, Nicholas D.
    Mukherjee, Santanu
    Bates, Alex
    Jasinski, Jacek B.
    Lee, Sang C.
    Park, Sam
    ENERGY STORAGE, 2020, 2 (04)
  • [6] Preparation and characterization of spinel LiMn2O4 nanorods as lithium-ion battery cathodes
    Chen Ze-hua
    Huang Ke-long
    Liu Su-qin
    Wang Hai-yan
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2010, 20 (12) : 2309 - 2313
  • [7] Performance improvement of LiMn2O4 as cathode material for lithium ion battery with bismuth modification
    Tan, C. L.
    Zhou, H. J.
    Li, W. S.
    Hou, X. H.
    Lue, D. S.
    Xu, M. Q.
    Huang, Q. M.
    JOURNAL OF POWER SOURCES, 2008, 184 (02) : 408 - 413
  • [8] A novel coating onto LiMn2O4 cathode with increased lithium ion battery performance
    Zeng, Jiesheng
    Li, Minsi
    Li, Xifei
    Chen, Chen
    Xiong, Dongbin
    Dong, Litian
    Li, Dejun
    Lushington, Andrew
    Sun, Xueliang
    APPLIED SURFACE SCIENCE, 2014, 317 : 884 - 891
  • [9] Impact of Carbon Nanostructures as Additives with Spinel Li4Ti5O12/LiMn2O4 Electrodes for Lithium Ion Battery Technology
    Gangaja, Binitha
    Reddy, Kasireddy Siva
    Nair, Shantikumar
    Santhanagopalan, Dhamodaran
    CHEMISTRYSELECT, 2017, 2 (30): : 9772 - 9776
  • [10] Controllable growth of LiMn2O4 by carbohydrate-assisted combustion synthesis for high performance Li-ion batteries
    Huang, Wei
    Wang, Gang
    Luo, Chong
    Xu, Yaobin
    Xu, Ying
    Eckstein, Brian J.
    Chen, Yao
    Wang, Binghao
    Huang, Jiaxing
    Kang, Yijin
    Wu, Jinsong
    Dravid, Vinayak P.
    Facchetti, Antonio
    Marks, Tobin J.
    NANO ENERGY, 2019, 64