Classification of Positive Solutions to a Divergent Equation on the Upper Half Space

被引:1
作者
Yao, Jin Ge [1 ]
Dou, Jing Bo [1 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
Divergent operator; Liouville theorem; Neumann boundary; method of moving spheres; Kelvin transformation; THEOREMS; INEQUALITIES; SOBOLEV;
D O I
10.1007/s10114-022-0345-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we classify the positive solutions of the divergent equation with Neumann boundary on the upper half space {-div(t(alpha) del u) = t(beta) f(u), (y, t) is an element of R-+(n+1), lim(t -> 0+) t(alpha) partial derivative u/partial derivative t = 0 by the method of moving spheres and Kelvin transformations, where n >= 1, alpha > 0, beta > -1, n-1/n+1 beta <= alpha > beta + 2 and f: (0, infinity) -> (0, infinity) is non-negative continuous function satisfying some conditions. This equation arises from a weighed Sobolev inequality involving divergent operator div(t(alpha) del u) on the upper half space.
引用
收藏
页码:499 / 509
页数:11
相关论文
共 17 条