Vibrio parahaemolyticus is a leading cause of seafood-associated illness. This study investigated the prevalence, virulence, and antibiotic resistance of V. parahaemolyticus in three low-and middle-income countries. Freshly caught fish samples (n = 330) imported to Jordan from Yemen, India, and Egypt were tested. The overall prevalence of V. parahaemolyticus was 15% (95% confidence interval: 11 to 19%). Three isolates (6%) were positive for the thermostable direct hemolysin-related (trh) gene, and all isolates was negative for the thermostable direct hemolysin (tdh) gene. All isolates were resistant to colistin sulfate, neomycin, and kanamycin, and 51 and 43% of isolates were resistant to tetracycline and ampicillin, respectively. Only 4% of the isolates were resistant to cefotaxime and chloramphenicol, and no isolates were resistant to sulfamethoxazole-trimethoprim, streptomycin, gentamicin, ciprofloxacin, and nalidixic acid. All isolates were resistant to two classes of antibiotics, and 86% were multidrug resistant (resistant to at least one drug in three or more classes of antibiotics). A literature review of clinical, seafood, and environmental V. parahaemolyticus isolates worldwide revealed high rates of gentamicin and ampicillin resistance, emerging resistance to third-generation cephalosporins, and limited resistance to sulfamethoxazole-trimethoprim, ciprofloxacin, nalidixic acid, and chloramphenicol. Thus, last-resort antibiotics could be ineffective for treating V. parahaemolyticus infections. Several global reports also documented illness outbreaks in humans caused by trh- and tdh-negative V. parahaemolyticus strains. More research is needed to determine whether the presence of these genes is sufficient to classify the strains as virulent.