Iterative schemes for stability problems with non-singular Fokker-Planck equations

被引:10
|
作者
Wedig, WV
机构
[1] University of Karlsruhe, Karlsruhe
关键词
stability problems; Fokker-Planck equations; iterative solution schemes; Monte-Carlo simulations;
D O I
10.1016/0020-7462(96)00032-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Stability investigations of perturbed dynamical systems are considerably refined by utilizing the invariant measures of the systems, which can be calculated by the stationary solutions of the associated Fokker-Planck equations. The paper presents iterative schemes in order to obtain these solutions as limit cycles and check them by means of Monte-Carlo simulations. Both methods are applied to parametrically excited oscillators including the limiting cases of deterministic harmonic excitations and stochastic white noise perturbations. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:707 / 715
页数:9
相关论文
共 50 条
  • [31] Solution of nonlinear Fokker-Planck equations
    Drozdov, AN
    Morillo, M
    PHYSICAL REVIEW E, 1996, 54 (01): : 931 - 937
  • [32] Generalized Stochastic Fokker-Planck Equations
    Chavanis, Pierre-Henri
    ENTROPY, 2015, 17 (05) : 3205 - 3252
  • [33] Deformed multivariable fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
  • [34] Periodic solutions of Fokker-Planck equations
    Chen, Feng
    Han, Yuecai
    Li, Yong
    Yang, Xue
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) : 285 - 298
  • [35] CONSERVATIVE DIFFERENCE SCHEMES FOR FOKKER-PLANCK EQUATION
    WHITNEY, J
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (12): : 1746 - &
  • [36] DIFFERENTIAL EQUATIONS OF FOKKER-PLANCK TYPE
    KRATZEL, E
    MATHEMATISCHE NACHRICHTEN, 1967, 35 (3-4) : 137 - &
  • [37] Convergence to Equilibrium in Fokker-Planck Equations
    Ji, Min
    Shen, Zhongwei
    Yi, Yingfei
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) : 1591 - 1615
  • [38] CONSERVATIVE DIFFERENCE SCHEMES FOR FOKKER-PLANCK EQUATION
    WHITNEY, JC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (11): : 1546 - &
  • [39] Solutions of a class of non-Markovian Fokker-Planck equations
    Sokolov, IM
    PHYSICAL REVIEW E, 2002, 66 (04): : 5 - 041101
  • [40] FOKKER-PLANCK EQUATIONS FOR SIMPLE NON-MARKOVIAN SYSTEMS
    ADELMAN, SA
    JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (01): : 124 - 130