Iterative schemes for stability problems with non-singular Fokker-Planck equations

被引:10
|
作者
Wedig, WV
机构
[1] University of Karlsruhe, Karlsruhe
关键词
stability problems; Fokker-Planck equations; iterative solution schemes; Monte-Carlo simulations;
D O I
10.1016/0020-7462(96)00032-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Stability investigations of perturbed dynamical systems are considerably refined by utilizing the invariant measures of the systems, which can be calculated by the stationary solutions of the associated Fokker-Planck equations. The paper presents iterative schemes in order to obtain these solutions as limit cycles and check them by means of Monte-Carlo simulations. Both methods are applied to parametrically excited oscillators including the limiting cases of deterministic harmonic excitations and stochastic white noise perturbations. Copyright (C) 1996 Elsevier Science Ltd.
引用
收藏
页码:707 / 715
页数:9
相关论文
共 50 条
  • [1] A fractional Fokker-Planck equation for non-singular kernel operators
    dos Santos, M. A. F.
    Gomez, Ignacio S.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [2] Quantitative stability estimates for Fokker-Planck equations
    Li, Huaiqian
    Luo, Dejun
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 122 : 125 - 163
  • [3] Structure Preserving Schemes for Fokker-Planck Equations of Irreversible Processes
    Liu, Chen
    Gao, Yuan
    Zhang, Xiangxiong
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (01)
  • [4] Structure Preserving Schemes for Nonlinear Fokker-Planck Equations and Applications
    Pareschi, Lorenzo
    Zanella, Mattia
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (03) : 1575 - 1600
  • [5] Boundary value problems of fractional Fokker-Planck equations
    Aleroev, Temirkhan S.
    Aleroeva, Hedi T.
    Huang, Jianfei
    Tamm, Mikhail V.
    Tang, Yifa
    Zhao, Yue
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) : 959 - 969
  • [6] Nonstandard finite difference schemes for linear and non-linear Fokker-Planck equations
    Neena, A. S.
    Clemence-Mkhope, Dominic P.
    Awasthi, Ashish
    JOURNAL OF ENGINEERING MATHEMATICS, 2024, 145 (01)
  • [7] Invariants of Fokker-Planck equations
    Sumiyoshi Abe
    The European Physical Journal Special Topics, 2017, 226 : 529 - 532
  • [8] Invariants of Fokker-Planck equations
    Abe, Sumiyoshi
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (03): : 529 - 532
  • [9] Deformed fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (04): : 667 - 674
  • [10] GEOMETRIC FOKKER-PLANCK EQUATIONS
    Lebeau, Gilles
    PORTUGALIAE MATHEMATICA, 2005, 62 (04) : 469 - 530