A 10-Gb/s OEIC with Meshed Spatially-Modulated Photo Detector in 0.18-μm CMOS Technology

被引:69
作者
Huang, Shih-Hao [1 ]
Chen, Wei-Zen [1 ]
Chang, Yu-Wei [1 ]
Huang, Yang-Tung [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu 30010, Taiwan
关键词
Optical receiver; optoelectronic integrated circuit (OEIC); spatially-modulated photo detector (SMPD); transimpedance amplifier (TIA); limiting amplifier (LA); ANALOG FRONT-END; OPTICAL RECEIVER; STANDARD CMOS; AMPLIFIER; COMMUNICATION;
D O I
10.1109/JSSC.2011.2116430
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes the design of a 10-Gb/s fully integrated CMOS optical receiver, which consists of a novel spatially-modulated photo detector (SMPD), a low-noise trans-impedance amplifier (TIA), and a post-limiting amplifier on a single chip. The bandwidth of proposed meshed SMPD can be boosted up to 6.9 GHz under a reverse-biased voltage of 14.2 V. The measured responsivity of the meshed SMPD is 29 mA/W as illuminated by 850-nm light source. To compensate the relatively low responsivity of on-chip CMOS photo detector (PD), a high-gain TIA with nested feedback and shunt peaking is proposed to achieve low-noise operation. The optical receiver is capable of delivering 25-k Omega conversion gain when driving 50-Omega output loads. For a PRBS test pattern of 2(7)-1, the 10-Gb/s optoelectronic integrated circuit (OEIC) has optical sensitivity of -6 dBm at a bit-error rate (BER) of 10(-11). Implemented in a generic 0.18-mu m CMOS technology, the chip area is 0.95 mm by 0.8 mm. The trans-impedance amplifier, post amplifier, and output buffer respectively drain 38 mW, 80 mW, and 27 mW from the 1.8-V supply.
引用
收藏
页码:1158 / 1169
页数:12
相关论文
共 24 条
[21]  
Sze S.M., 2021, Physics of semiconductor devices
[22]   Power Efficient 4.5Gbit/s Optical Receiver in 130nm CMOS with Integrated Photodiode [J].
Tavernier, Filip ;
Steyaert, Michiel .
ESSCIRC 2008: PROCEEDINGS OF THE 34TH EUROPEAN SOLID-STATE CIRCUITS CONFERENCE, 2008, :162-165
[23]   1-Gb/s integrated optical detectors and receivers in commercial CMOS technologies [J].
Woodward, TK ;
Krishnamoorthy, AV .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1999, 5 (02) :146-156
[24]  
ZILLER J, 2010, LIGHT PEAK OVERVIEW