Integrality of Homfly 1-tangle invariants

被引:7
作者
Morton, Hugh R. [1 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2007年 / 7卷
关键词
D O I
10.2140/agt.2007.7.327
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an invariant J(K) of a knot K, the corresponding 1-tangle invariant J'(K) = J(K)/J(U) is defined as the quotient of J(K) by its value J(U) on the unknot U. We prove here that when J is the Homfly satellite invariant determined by decorating K with any eigenvector of the meridian map in the Homfly skein of the annulus then J' is always an integer 2-variable Laurent polynomial. Specialisation of the 2-variable polynomials for suitable choices of eigenvector shows that the 1-tangle irreducible quantum sl(N) invariants of K are integer 1-variable Laurent polynomials.
引用
收藏
页码:327 / 338
页数:12
相关论文
共 11 条