Starfish-shaped Co3O4/ZnFe2O4 Hollow Nanocomposite: Synthesis, Supercapacity, and Magnetic Properties

被引:114
作者
Hu, Xiao-Wei [1 ]
Liu, Sheng [1 ]
Qu, Bo-Tao [1 ]
You, Xiao-Zeng [1 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, Collaborat Innovat Ctr Adv Microstruct, State Key Lab Coordinat Chem, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
starfish-shaped Co3O4/ZnFe2O4 nanocomposites; hollow; porous; supercapacitor; bimagnetic system; magnetic; METAL-ORGANIC FRAMEWORKS; SOLID-STATE THERMOLYSIS; GREEN SYNTHESIS; PERFORMANCE; GRAPHENE; COMPOSITE; STORAGE; CAPACITANCE; ELECTRODES; DEPOSITION;
D O I
10.1021/acsami.5b02317
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A novel starfish-shaped porous Co3O4/ZnFe2O4 hollow nanocomposite was fabricated for the first time by a facile and stepwise hydrothermal approach, utilizing metal-organic frameworks as precursors and sacrificial templates. The morphology evolution in the synthetic process upon reaction time and amount of raw materials were investigated in detail. The as-synthesized starfish-shaped porous Co3O4/ZnFe2O4 composites were studied as an electrode material for supercapacitors showing good capacitive performances. Their specific capacitance can reach as high as 326 F g(-1) at 1 A g(-1). The rational combination of components with different potential windows in a composite material enables a wide overall potential range resulting in the highest energy density of 82.5 Wh kg(-1), significantly larger than that of the single components. Magnetic measurements show that the system presents a large coercivity and high squareness (at 1.8 K, H-c = 884 Oe and Mr/Ms = 0.52) with respect to the individual components, which may be attributed to the unique morphology of Co3O4/ZnFe2O4, as well as surface and interface exchange coupling effects. Materials with this novel design and fabrication may show promise for potential applications in electrochemical energy storage and magnetic devices.
引用
收藏
页码:9972 / 9981
页数:10
相关论文
共 49 条
[1]   Cation-Triggered Drug Release from a Porous Zinc-Adeninate Metal-Organic Framework [J].
An, Jihyun ;
Geib, Steven J. ;
Rosi, Nathaniel L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (24) :8376-+
[2]   Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors [J].
Cheng, Yingwen ;
Lu, Songtao ;
Zhang, Hongbo ;
Varanasi, Chakrapani V. ;
Liu, Jie .
NANO LETTERS, 2012, 12 (08) :4206-4211
[3]   Exploring the structural and magnetic properties of TiO2/SnO2 core/shell nanocomposite: An experimental and density functional study [J].
Chetri, Pawan ;
Basyach, Priyanka ;
Choudhury, Amarjyoti .
JOURNAL OF SOLID STATE CHEMISTRY, 2014, 220 :124-131
[4]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[5]  
Conway B.E., 1999, ELECTROCHEM SUPERCAP, DOI DOI 10.1007/978-1-4757-3058-6
[6]   α MnMoO4/graphene hybrid composite: high energy density supercapacitor electrode material [J].
Ghosh, Debasis ;
Giri, Soumen ;
Moniruzzaman, Md ;
Basu, Tanya ;
Mandal, Manas ;
Das, Chapal Kumar .
DALTON TRANSACTIONS, 2014, 43 (28) :11067-11076
[7]   Needle-like Co3O4 Anchored on the Graphene with Enhanced Electrochemical Performance for Aqueous Supercapacitors [J].
Guan, Qun ;
Cheng, Jianli ;
Wang, Bin ;
Ni, Wei ;
Gu, Guifang ;
Li, Xiaodong ;
Huang, Ling ;
Yang, Guangcheng ;
Nie, Fude .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) :7626-7632
[8]   Nano ZnO@reduced graphene oxide composite for high performance supercapacitor: Green synthesis in supercritical fluid [J].
Haldorai, Yuvaraj ;
Voit, Walter ;
Shim, Jae-Jin .
ELECTROCHIMICA ACTA, 2014, 120 :65-72
[9]   Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: Importance of the electrochemical reversibility of redox couples [J].
Hu, Chi-Chang ;
Chen, Jia-Cing ;
Chang, Kuo-Hsin .
JOURNAL OF POWER SOURCES, 2013, 221 :128-133
[10]   Fabrication Based on the Kirkendall Effect of Co3O4 Porous Nanocages with Extraordinarily High Capacity for Lithium Storage [J].
Hu, Lin ;
Yan, Nan ;
Chen, Qianwang ;
Zhang, Ping ;
Zhong, Hao ;
Zheng, Xinrui ;
Li, Yan ;
Hu, Xianyi .
CHEMISTRY-A EUROPEAN JOURNAL, 2012, 18 (29) :8971-8977