A Benchmark on Artificial Intelligence Techniques for Automatic Chronic Respiratory Diseases Risk Classification

被引:0
作者
Rios, Sebastian A. [1 ]
Garcia Tenorio, Fabian [1 ]
Jimenez-Molina, Angel [1 ]
机构
[1] Univ Chile, Dept Ind Engn, Business Intelligence Res Ctr, Santiago, Chile
来源
INNOVATION IN MEDICINE AND HEALTHCARE 2015 | 2016年 / 45卷
关键词
D O I
10.1007/978-3-319-23024-5_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A major public health problem is the chronically respiratory ill patients. To create a more preventive and anticipatory system for these patients we can use artificial intelligence techniques. This work tackle the problem of developing a model for automatic classification of patients with risk of having a respiratory crisis on the biggest paediatric Public Hospital in Santiago, Chile. We present a benchmark of different approaches to create a model. The models were developed with history of biomedical signals for 45 patients from 0 months to 15 years old. We are able to identify to approaches which have a remarkable performance.
引用
收藏
页码:471 / 481
页数:11
相关论文
共 50 条
  • [31] An Augmented Artificial Intelligence Approach for Chronic Diseases Prediction
    Rashid, Junaid
    Batool, Saba
    Kim, Jungeun
    Nisar, Muhammad Wasif
    Hussain, Amir
    Juneja, Sapna
    Kushwaha, Riti
    FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [32] Automatic Generation Control of Microgrid using Artificial Intelligence Techniques
    Mallesham, G.
    Mishra, S.
    Jha, A. N.
    2012 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING, 2012,
  • [33] Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark
    Brinker, Titus J.
    Hekler, Achim
    Hauschild, Axel
    Berking, Carola
    Schilling, Bastian
    Enk, Alexander H.
    Haferkamp, Sebastian
    Karoglan, Ante
    von Kalle, Christof
    Weichenthal, Michael
    Sattler, Elke
    Schadendorf, Dirk
    Gaiser, Maria R.
    Klode, Joachim
    Utikal, Jochen S.
    EUROPEAN JOURNAL OF CANCER, 2019, 111 : 30 - 37
  • [34] Comparison of Supervised Techniques of Artificial Intelligence in the Prediction of Cardiovascular Diseases
    Comas-Gonzalez, Z.
    Mardini-Bovea, J.
    Salcedo, D.
    De-la-Hoz-Franco, E.
    HCI INTERNATIONAL 2023 LATE BREAKING PAPERS, HCII 2023, PT VI, 2023, 14059 : 58 - 68
  • [35] Automatic ship classification for a riverside monitoring system using a cascade of artificial intelligence techniques including penalties and rewards
    Polap, Dawid
    Wlodarczyk-Sielicka, Marta
    Wawrzyniak, Natalia
    ISA TRANSACTIONS, 2022, 121 : 232 - 239
  • [36] Multiclass Classification of Grape Diseases Using Deep Artificial Intelligence
    Fraiwan, Mohammad
    Faouri, Esraa
    Khasawneh, Natheer
    AGRICULTURE-BASEL, 2022, 12 (10):
  • [37] Classification and Statistics of Endocrine Diseases and Diagnoses based on Artificial Intelligence
    Yan Shuxun
    Wang Ying
    Li Huan
    Li Yun
    2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND ENGINEERING APPLICATIONS, 2013, : 202 - 207
  • [38] Rock Mass Classification by Multivariate Statistical Techniques and Artificial Intelligence
    Santos, Allan Erlikhman Medeiros
    Lana, Milene Sabino
    Pereira, Tiago Martins
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2021, 39 (03) : 2409 - 2430
  • [39] Schizophrenia: A Survey of Artificial Intelligence Techniques Applied to Detection and Classification
    Lai, Joel Weijia
    Ang, Candice Ke En
    Acharya, U. Rajendra
    Cheong, Kang Hao
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (11)
  • [40] Classification of artificial intelligence techniques for early architectural design stages
    Vissers-Similon, Elien
    Dounas, Theodoros
    De Walsche, Johan
    INTERNATIONAL JOURNAL OF ARCHITECTURAL COMPUTING, 2024,