Plasticity and acquisition of the thermal tolerance (upper thermal limit and heat shock response) in the intertidal species Palaemon elegans

被引:21
作者
Ravaux, Juliette [1 ]
Leger, Nelly [1 ]
Rabet, Nicolas [2 ]
Fourgous, Claire [1 ]
Voland, Guillaume [1 ]
Zbinden, Magali [1 ]
Shillito, Bruce [1 ]
机构
[1] Univ Paris 06, Univ Paris 04, Equipe Adaptat Milieux Extremes, UMR CNRS MNHN Biol Organismes Aquat & Ecosyst 720, Bat A,4e Etage,7 Quai St Bernard, F-75005 Paris, France
[2] Univ Paris 06, Univ Paris 04, UMR CNRS MNHN Biol Organismes Aquat & Ecosyst 720, Dept Milieux & Peuplements Aquat, CP26,43 Rue Cuvier, F-75005 Paris, France
关键词
heat stress; acclimation; thermal biology; development; hsp70; Caridea; CLIMATE-CHANGE; ACCLIMATION; SHRIMP; ADAPTATION; PREFERENCE; PHYSIOLOGY; CAPACITY; COASTAL; MAXIMA;
D O I
10.1016/j.jembe.2016.07.003
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The marine species sensitivity to climate change will depend on the ways by which these species can adapt to thermal increase and heterogeneity. Here, we present evidence that the intertidal shrimp Palaemon elegans acclimates its thermal tolerance, in response to environmental water temperature, through a significant shift of its upper thermal limit with no concomittant acclimation of the heat shock response (hsp70 stress gene expression threshold). This species is less thermotolerant than its congener Palaemonetes varians, and would therefore potentially be more sensitive to an increase in environmental temperature, such as imposed by global warming. In P. elegans life cycle, physiological adjustments like the shift of the thermal limit and the acquisition of a significant HSR, occurred during the metamorphosis from larvae to post-larvae. This suggests that this step is a genetically-programmed milestone in the process of thermal tolerance acquisition. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:39 / 45
页数:7
相关论文
共 36 条
  • [1] Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1
  • [2] Acclimation of the temperature set-points of the heat-shock response
    Barua, D
    Heckathorn, SA
    [J]. JOURNAL OF THERMAL BIOLOGY, 2004, 29 (03) : 185 - 193
  • [3] Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context
    Chown, Steven L.
    Jumbam, Keafon R.
    Sorensen, Jesper G.
    Terblanche, John S.
    [J]. FUNCTIONAL ECOLOGY, 2009, 23 (01) : 133 - 140
  • [4] CLAUSSEN DL, 1977, COMP BIOCHEM PHYS A, V58, P333
  • [5] EFFECTS OF NON-CIRCADIAN LIGHT-DARK CYCLES ON THE GROWTH AND MOLTING OF PALAEMON-ELEGANS REARED IN THE LABORATORY
    DALLEY, R
    [J]. MARINE BIOLOGY, 1980, 56 (01) : 71 - 78
  • [6] Behavioural thermoregulation and critical thermal limits of Macrobrachium acanthurus (Wiegman)
    Díaz, F
    Sierra, E
    Re, AD
    Rodríguez, L
    [J]. JOURNAL OF THERMAL BIOLOGY, 2002, 27 (05) : 423 - 428
  • [7] The effects of exposure to critical thermal maxima on the physiological, metabolic, and immunological responses in adult white shrimp Litopenaeus vannamei (Boone)
    Diaz, Fernando
    Denisse Re, Ana
    Sanchez, Ariadna
    Cruz, Honorio
    Gonzalez, Ricardo A.
    Noemi Sanchez, L.
    Licea, Alexei
    Ponce-Rivas, Elizabeth
    Enriqueta Munoz-Marquez, Ma
    Giffard, Ivonne
    Rosas, Carlos
    [J]. MARINE AND FRESHWATER BEHAVIOUR AND PHYSIOLOGY, 2013, 45 (06) : 365 - 374
  • [8] Fincham A.A., 1977, Bulletin Br Mus nat Hist (zool), V32, P1
  • [9] Thermal preference, tolerance and oxygen consumption of adult white shrimp Litopenaeus vannamei (Boone) exposed to different acclimation temperatures
    Gonzalez, Ricardo A.
    Diaz, Fernando
    Licea, Alexei
    Denisse Re, Ana
    Noemi Sanchez, L.
    Garcia-Esquivel, Zaul
    [J]. JOURNAL OF THERMAL BIOLOGY, 2010, 35 (05) : 218 - 224
  • [10] Grabowski Michal, 2006, Aquatic Invasions, V1, P116