Positive solutions of fourth-order two point boundary value problems

被引:97
作者
Liu, B [1 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China
基金
中国博士后科学基金;
关键词
positive solution; boundary value problems; cone;
D O I
10.1016/S0096-3003(02)00857-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by using the Krasnoselskii fixed point theorem, we study the existence of one or multiple positive solution of the fourth-order two point boundary value problem y((4)) (t) = f (1, y(t), y(n) (t)), y(0) = y(1) = y(n)(0) = y(n) (1) = 0. We also give some examples to illustrate our results. (C) 2002 Elsevier Inc. All rights reserved.
引用
收藏
页码:407 / 420
页数:14
相关论文
共 9 条
[1]   EXISTENCE AND UNIQUENESS THEOREMS FOR 4TH-ORDER BOUNDARY-VALUE-PROBLEMS [J].
AFTABIZADEH, AR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 116 (02) :415-426
[2]  
[Anonymous], APPL ANAL, DOI DOI 10.1080/00036819508840401
[3]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[4]   EXISTENCE FOR A 4TH-ORDER BOUNDARY-VALUE PROBLEM UNDER A 2-PARAMETER NONRESONANCE CONDITION [J].
DELPINO, MA ;
MANASEVICH, RF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (01) :81-86
[5]  
Gupta C. P., 1988, Applicable Analysis, V26, P289, DOI 10.1080/00036818808839715
[6]  
Gupta C. P., 1990, APPL ANAL, V36, P169, DOI DOI 10.1080/00036819008839930
[7]  
KRASNOSELSKII M.A, 1964, Positive Solution of Operator Equations
[8]  
Ma Ruyun, 1999, ANN DIFFERENTIAL EQU, V15, P305
[9]   4TH-ORDER 2-POINT BOUNDARY-VALUE PROBLEMS [J].
YANG, YS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (01) :175-180