Sensitivity analysis of prompt neutron decay constant using perturbation theory

被引:16
作者
Endo, Tomohiro [1 ]
Yamamoto, Akio [1 ]
机构
[1] Nagoya Univ, Grad Sch Engn, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan
基金
日本学术振兴会;
关键词
omega-eigenvalue; sensitivity analysis; first-order perturbation theory; adjoint; uncertainty; covariance; RANDOM SAMPLING TECHNIQUE; UNCERTAINTY QUANTIFICATION; CROSS-SECTIONS; PARAMETERS;
D O I
10.1080/00223131.2018.1491902
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Experimental results of prompt neutron decay constant is useful information to validate numerical results of -eigenvalue for spatial and energetic fundamental mode. In order to accomplish the data assimilation technique using , it is desirable to establish an efficient numerical calculation method for sensitivity coefficient analysis of . For this purpose, the numerical calculation method using the first-order perturbation theory is investigated. A specific theoretical formula is derived to evaluate the sensitivity coefficient of to nuclear data. The derived rigorous formula utilizes forward and adjoint eigenfunctions which consist of neutron flux and delayed neutron precursor densities. Using the prompt approximation, the derived formula can be simplified without the term involving the delayed neutron precursor densities. By calculating using the multi-energy-group neutron transport code for an ICSBEP benchmark problem, the derived formula for sensitivity analysis using the perturbation theory is verified by comparing with the reference results using the direct method. Consequently, the efficient numerical procedures for uncertainty quantification of can be established by the aid of the sensitivity coefficients based on the perturbation theory.
引用
收藏
页码:1245 / 1254
页数:10
相关论文
共 25 条
[1]  
Alcouffe R. E., 2008, LAUR0807258
[2]  
[Anonymous], 2017, INT CRIT SAF BENCHM
[3]   ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data [J].
Chadwick, M. B. ;
Herman, M. ;
Oblozinsky, P. ;
Dunn, M. E. ;
Danon, Y. ;
Kahler, A. C. ;
Smith, D. L. ;
Pritychenko, B. ;
Arbanas, G. ;
Arcilla, R. ;
Brewer, R. ;
Brown, D. A. ;
Capote, R. ;
Carlson, A. D. ;
Cho, Y. S. ;
Derrien, H. ;
Guber, K. ;
Hale, G. M. ;
Hoblit, S. ;
Holloway, S. ;
Johnson, T. D. ;
Kawano, T. ;
Kiedrowski, B. C. ;
Kim, H. ;
Kunieda, S. ;
Larson, N. M. ;
Leal, L. ;
Lestone, J. P. ;
Little, R. C. ;
McCutchan, E. A. ;
MacFarlane, R. E. ;
MacInnes, M. ;
Mattoon, C. M. ;
McKnight, R. D. ;
Mughabghab, S. F. ;
Nobre, G. P. A. ;
Palmiotti, G. ;
Palumbo, A. ;
Pigni, M. T. ;
Pronyaev, V. G. ;
Sayer, R. O. ;
Sonzogni, A. A. ;
Summers, N. C. ;
Talou, P. ;
Thompson, I. J. ;
Trkov, A. ;
Vogt, R. L. ;
van der Marck, S. C. ;
Wallner, A. ;
White, M. C. .
NUCLEAR DATA SHEETS, 2011, 112 (12) :2887-2996
[4]   Nuclear data-induced uncertainty quantification of neutronics parameters of accelerator-driven system [J].
Chiba, Go ;
Pyeon, Cheol Ho ;
van Rooijen, Wilfred ;
Endo, Tomohiro .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2016, 53 (10) :1653-1661
[5]   RESONANCE SELF-SHIELDING EFFECT IN UNCERTAINTY QUANTIFICATION OF FISSION REACTOR NEUTRONICS PARAMETERS [J].
Chiba, Go ;
Tsuji, Masashi ;
Narabayashi, Tadashi .
NUCLEAR ENGINEERING AND TECHNOLOGY, 2014, 46 (03) :281-290
[6]  
Endo T, 2018, P PHYSOR 2018 APR 22
[7]   Experimental analysis and uncertainty quantification using random sampling technique for ADS experiments at KUCA [J].
Endo, Tomohiro ;
Chiba, Go ;
van Rooijen, Willem Frederik Geert ;
Yamanaka, Masao ;
Pyeon, Cheol Ho .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2018, 55 (04) :450-459
[8]   Bias factor method using random sampling technique [J].
Endo, Tomohiro ;
Yamamoto, Akio ;
Watanabe, Tomoaki .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2016, 53 (10) :1494-1501
[9]   Statistical error estimation of the Feynman- method using the bootstrap method [J].
Endo, Tomohiro ;
Yamamoto, Akio ;
Yagi, Takahiro ;
Pyeon, Cheol Ho .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2016, 53 (09) :1447-1453
[10]  
Feynman R.P., 1956, J. Nucl. Energy., V3, P64, DOI DOI 10.1016/0891-3919(56)90042-0