Production of xylitol from acidic hydrolysates of lignocellulosic biomass by catalytic hydrogenation over a Ni-Ru/C catalyst

被引:7
作者
Bernardes Vasconcelos Carvalho, Santulla Leide [1 ]
de Moraes Medeiros, Eliane Bezerra [1 ]
Wanderley, Ayrton de Souza [1 ]
Ribeiro, Luccas de Moura [1 ]
da Silva, Julia Gabriela [1 ]
de Almeida Simoes, Ivana Taciana [1 ]
do Rego Lemos, Nathalia Cecilia [1 ]
Ribeiro Neto, Nelson Joaquim [1 ]
Moraes de Abreu, Cesar Augusto [1 ]
Baudel, Henrique Macedo [1 ]
de Lima Filho, Nelson Medeiros [1 ]
机构
[1] Fed Univ Pernambuco UFPE, Dept Chem Engn, 1235 Prof Moraes Rego Av,Cidade Univ, BR-50670901 Recife, PE, Brazil
关键词
Hemicellulose; Nickel-ruthenium catalyst; Activated carbon; Hydrogenation; Kinetics; SELECTIVE HYDROGENATION; CANDIDA-GUILLIERMONDII; XYLOSE; HYDROGENOLYSIS; SORBITOL; GLUCOSE; STARCH;
D O I
10.1016/j.cherd.2021.07.025
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Acid hydrolysis and hydrogenation reactions were capable to convert xylose obtained from biomass materials using heterogeneous catalysts based on Ni and Ru. Xylose was extracted from sugar cane bagasse using dilute acid sulfuric solutions, and then xylitol was obtained through xylose catalytic hydrogenation. A bimetallic catalyst (Ni 10.0 wt.% and Ru 1.0 wt.%) was prepared by the wet impregnation method, supporting the metallic phase in activated carbon. Sugarcane bagasse was delignified in a three-step pretreatment (acid, basic and organic extractions, respectively), allowing effective hydrolysis of the resulting holocellulose. The acid hydrolysis process for xylose extraction was more effective at the highest concentration of sulfuric acid in the study (2.5% v/v), obtaining a xylose-rich hydrolysate with concentration over 10 g L-1. For the xylose hydrogenation process, conversion of xylose and selectivity to xylitol was near 90 % after 1 h of reaction. Kinetic evolutions were evaluated through a mathematical model in terms of operating time and temperature, providing hydrogenation activation energy values of the order of 40.76 kJ mol(-1). (C) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 18
页数:8
相关论文
共 33 条
[1]   Structure sensitivity in catalytic hydrogenation of glucose over ruthenium [J].
Aho, Atte ;
Roggan, Stefan ;
Simakova, Olga A. ;
Salmi, Tapio ;
Murzin, Dmitry Yu. .
CATALYSIS TODAY, 2015, 241 :195-199
[2]   Cooperative action of heteropolyacids and carbon supported Ru catalysts for the conversion of cellulose [J].
Almohalla, Maria ;
Rodriguez-Ramos, Inmaculada ;
Ribeiro, Lucilia S. ;
Orfao, Jose J. M. ;
Pereira, Manuel Fernando R. ;
Guerrero-Ruiz, Antonio .
CATALYSIS TODAY, 2018, 301 :65-71
[3]   Xylitol: A review on the progress and challenges of its production by chemical route [J].
Arcano, Yaime Delgado ;
Valmana Garcia, Oscar Daniel ;
Mandelli, Dalmo ;
Carvalho, Wagner Alves ;
Magalhaes Pontes, Luiz Antonio .
CATALYSIS TODAY, 2020, 344 :2-14
[4]   Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate [J].
Carlos Lopez-Linares, Juan ;
Romero, Inmaculada ;
Cara, Cristobal ;
Castro, Eulogio ;
Mussatto, Solange I. .
BIORESOURCE TECHNOLOGY, 2018, 247 :736-743
[5]   Hydrothermal acid hydrolysis for highly efficient separation of lignin and xylose from pre-hydrolysis liquor of kraft pulping process [J].
Chen, Xue ;
Cao, Xuefei ;
Sun, Shaoni ;
Yuan, Tongqi ;
Wang, Shuangfei ;
Shi, Quentin ;
Sun, Runcang .
SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 209 :741-747
[6]   Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides [J].
Chheda, Juben N. ;
Roman-Leshkov, Yuriy ;
Dumesic, James A. .
GREEN CHEMISTRY, 2007, 9 (04) :342-350
[7]   FERMENTATION OF HEXOSES AND PENTOSES FROM HYDROLYZED SOYBEAN HULL INTO ETHANOL AND XYLITOL BY Candida guilliermondii BL 13 [J].
da Cunha-Pereira, F. ;
Hickert, L. R. ;
Rech, R. ;
Dillon, A. P. ;
Zachia Ayub, M. A. .
BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2017, 34 (04) :927-936
[8]   A Short Overview on the Hydrogen Production Via Aqueous Phase Reforming (APR) of Cellulose, C6-C5 Sugars and Polyols [J].
Fasolini, Andrea ;
Cucciniello, Raffaele ;
Paone, Emilia ;
Mauriello, Francesco ;
Tabanelli, Tommaso .
CATALYSTS, 2019, 9 (11)
[9]   Treatments of Lignocellulosic Hydrolysates and Continuous-Flow Hydrogenation of Xylose to Xylitol [J].
Feher, Aniko ;
Feher, Csaba ;
Rozbach, Margareta ;
Racz, Gergely ;
Fekete, Melinda ;
Hegedus, Laszlo ;
Barta, Zsolt .
CHEMICAL ENGINEERING & TECHNOLOGY, 2018, 41 (03) :496-503
[10]   Evaluation of the effect of the dilute acid hydrolysis on sugars release from olive prunings [J].
Garcia-Martin, Juan Francisco ;
Sanchez, Sebastian ;
Cuevas, Manuel .
RENEWABLE ENERGY, 2013, 51 :382-387