Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells

被引:385
作者
Kopidakis, N [1 ]
Benkstein, KD [1 ]
van de Lagemaat, J [1 ]
Frank, AJ [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
关键词
D O I
10.1021/jp0304475
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of lithium intercalation on the transport dynamics and recombination kinetics in dye-sensitized nanoparticle TiO2 solar cells at lithium levels below 5 atom % was investigated by photocurrent and photovoltage transient and spectroelectrochemical techniques. Titanium dioxide films were doped electrochemically in the dark and under illumination. It was discovered that when Li+ is present in the electrolyte, lithium intercalates irreversibly into dye-sensitized TiO2 films at open circuit (ca. -0.7 V) under normal solar light intensities. Photocurrent transients of doped nonsensitized TiO2 films indicate that lithium doping decreases the diffusion coefficient of electrons through the nanoparticle network. Photocurrent and photovoltage transients of sensitized TiO2 films provide the first evidence that electron transport limits recombination with the redox electrolyte in working cells. As the Li density in the films increases, the diffusion and recombination times of photoelectrons increase proportionately, indicating a causal link between electron transport and recombination. The electron diffusion coefficient in dye-sensitized solar cells exhibits a power-law dependence on photocharge at all concentrations of inserted lithium in the TiO2 film. With increasing doping, the dependence of the electron diffusion coefficient on the photocharge becomes stronger, a phenomenon attributed to widening of the exponential conduction band tail resulting from disorder induced by randomly placed lithium defects in TiO2. The photovoltaic characteristics of dye-sensitized solar cells are largely unaffected by lithium intercalation, implying that intercalation has only a small effect on the charge collection efficiency and the rate of recombination. A simple model is presented that explains the observed transport-limited recombination. The results suggest that increasing the electron transport rate will not significantly improve the solar cell performance.
引用
收藏
页码:11307 / 11315
页数:9
相关论文
共 60 条
  • [21] Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias
    Haque, SA
    Tachibana, Y
    Klug, DR
    Durrant, JR
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (10): : 1745 - 1749
  • [22] Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films
    Haque, SA
    Tachibana, Y
    Willis, RL
    Moser, JE
    Grätzel, M
    Klug, DR
    Durrant, JR
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (03): : 538 - 547
  • [23] Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells
    Huang, SY
    Schlichthorl, G
    Nozik, AJ
    Gratzel, M
    Frank, AJ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (14): : 2576 - 2582
  • [24] Electron transport in the dye sensitized nanocrystalline cell
    Kambili, A
    Walker, AB
    Qiu, FL
    Fisher, AC
    Savin, AD
    Peter, LM
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 14 (1-2) : 203 - 209
  • [25] STUDY OF NANOCRYSTALLINE TIO2 (ANATASE) ELECTRODE IN THE ACCUMULATION REGIME
    KAVAN, L
    KRATOCHVILOVA, K
    GRATZEL, M
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 394 (1-2): : 93 - 102
  • [26] Nanocrystalline TiO2 (anatase) electrodes: Surface morphology, adsorption, and electrochemical properties
    Kavan, L
    Gratzel, M
    Rathousky, J
    Zukal, A
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (02) : 394 - 400
  • [27] Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions
    Kern, R
    Sastrawan, R
    Ferber, J
    Stangl, R
    Luther, J
    [J]. ELECTROCHIMICA ACTA, 2002, 47 (26) : 4213 - 4225
  • [28] KONENKAMP R, 1993, J PHYS CHEM-US, V97, P7328, DOI 10.1021/j100130a034
  • [29] Könenkamp R, 2000, PHYS REV B, V61, P11057, DOI 10.1103/PhysRevB.61.11057
  • [30] Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2
    Kopidakis, N
    Schiff, EA
    Park, NG
    van de Lagemaat, J
    Frank, AJ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) : 3930 - 3936