Analysis of coupled quantum parametric harmonic oscillators by classical nonlinear modeling

被引:0
作者
Matsuura, Keita [1 ]
Nakamura, Ibuki [2 ]
Fujisaka, Hisato [2 ]
机构
[1] Techno Project Japan Co, 2-10-14 Gakuen Minami, Matsue, Shimane 6900826, Japan
[2] Hiroshima City Univ, Fac Informat Sci, Asaminami Ku, 3-4-1 Ozuka Higashi, Hiroshima 7313194, Japan
来源
IEICE NONLINEAR THEORY AND ITS APPLICATIONS | 2022年 / 13卷 / 03期
关键词
nonlinear stochastic ordinary differential equation; deterministic chaos; quantum harmonic oscillator; coupled oscillators; parametric oscillator; WAVE-FUNCTIONS; DOT;
D O I
10.1587/nolta.13.570
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quantum-dot and ion-trap technologies are applied to implementation of quantum computers. Quantum mechanical systems constructed by the technologies are considered as networks of charged particles. In this paper, we present first that the networks are described by coupled quantum parametric harmonic oscillators (CQPHOs). Second, the CQPHOs are modeled by a system of nonlinear stochastic ordinary differential equations (NSODEs). The NSODEs consist of a deterministic drift term and a probabilistic fluctuation term. The drift term is derived by substituting a quantum probability density function and a quantum current density for the classical counterparts in a drift term of the Fokker-Planck equation. Third, we integrate numerically the system of the NSODEs from which probabilistic fluctuation term is removed. As a result of the integral, we find that the system behaves chaotically when the amplitude and the frequency of the time-varying parameter of the CQPHOs are in specific ranges. This implies that quantum computers may behave irregularly because not only of intrinsic probabilistic nature of quantum mechanics but also of deterministically chaotic nature.
引用
收藏
页码:570 / 581
页数:12
相关论文
共 24 条
  • [1] Arnold L, 1995, LECT NOTES MATH, V1609, P1
  • [2] SMOOTHED WAVE-FUNCTIONS OF CHAOTIC QUANTUM-SYSTEMS
    BOGOMOLNY, EB
    [J]. PHYSICA D, 1988, 31 (02): : 169 - 189
  • [3] BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
  • [4] Bollt E M., 2013, SIAM, DOI DOI 10.1137/1.9781611972641
  • [5] Casati G., 1985, NATO ASI B, V120
  • [6] Realization of Harmonic Oscillator Arrays with Graded Semiconductor Quantum Wells
    Deimert, C.
    Goulain, P.
    Manceau, J-M
    Pasek, W.
    Yoon, T.
    Bousseksou, A.
    Kim, N. Y.
    Colombelli, R.
    Wasilewski, Z. R.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (09)
  • [7] Quantum Parametric Oscillator with Trapped Ions
    Ding, Shiqian
    Maslennikov, Gleb
    Habltzel, Roland
    Loh, Huanqian
    Matsukevich, Dzmitry
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (15)
  • [8] Two Electrons in a Quantum Dot: A Unified Approach
    Gonul, Bulent
    Bakir, Ebru
    Koksal, Koray
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (12) : 3091 - 3100
  • [9] Quantum computing with trapped ions
    Haffner, H.
    Roos, C. F.
    Blatt, R.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (04): : 155 - 203
  • [10] Holzscheiter MichaelH., 2002, LOS ALAMOS SCI, V27, P264